Content Overview
- Visualize a batch of the data
- Train and evaluate
- Load logs in tensorboard
- Saving and exporting the trained model
- Inference from Trained Model
- Visualize test data
- Importing SavedModel
- Visualize predictions
Visualize a batch of the data.
for images, labels in task.build_inputs(exp_config.task.train_data).take(1):
print()
print(f'images.shape: {str(images.shape):16} images.dtype: {images.dtype!r}')
print(f'labels.keys: {labels.keys()}')
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/util/deprecation.py:660: calling map_fn_v2 (from tensorflow.python.ops.map_fn) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Use fn_output_signature instead
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
W0000 00:00:1701347149.948159 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -56 } dim { size: -42 } dim { size: -43 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -3 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -3 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -3 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } }
images.shape: (8, 256, 256, 3) images.dtype: tf.float32
labels.keys: dict_keys(['anchor_boxes', 'image_info', 'rpn_score_targets', 'rpn_box_targets', 'gt_boxes', 'gt_classes', 'gt_outer_boxes', 'gt_masks'])
Create Category Index Dictionary to map the labels to coressponding label names
tf_ex_decoder = TfExampleDecoder(include_mask=True)
Helper Function for Visualizing the results from TFRecords
Use visualize_boxes_and_labels_on_image_array
from visualization_utils
to draw boudning boxes on the image.
def show_batch(raw_records):
plt.figure(figsize=(20, 20))
use_normalized_coordinates=True
min_score_thresh = 0.30
for i, serialized_example in enumerate(raw_records):
plt.subplot(1, 3, i + 1)
decoded_tensors = tf_ex_decoder.decode(serialized_example)
image = decoded_tensors['image'].numpy().astype('uint8')
scores = np.ones(shape=(len(decoded_tensors['groundtruth_boxes'])))
# print(decoded_tensors['groundtruth_instance_masks'].numpy().shape)
# print(decoded_tensors.keys())
visualization_utils.visualize_boxes_and_labels_on_image_array(
image,
decoded_tensors['groundtruth_boxes'].numpy(),
decoded_tensors['groundtruth_classes'].numpy().astype('int'),
scores,
category_index=category_index,
use_normalized_coordinates=use_normalized_coordinates,
min_score_thresh=min_score_thresh,
instance_masks=decoded_tensors['groundtruth_instance_masks'].numpy().astype('uint8'),
line_thickness=4)
plt.imshow(image)
plt.axis("off")
plt.title(f"Image-{i+1}")
plt.show()
Visualization of Train Data
The bounding box detection has three components
- Class label of the object detected.
- Percentage of match between predicted and ground truth bounding boxes.
- Instance Segmentation Mask
:::tip
Note: The reason of everything is 100% is because we are visualising the groundtruth
:::
buffer_size = 100
num_of_examples = 3
train_tfrecords = tf.io.gfile.glob(exp_config.task.train_data.input_path)
raw_records = tf.data.TFRecordDataset(train_tfrecords).shuffle(buffer_size=buffer_size).take(num_of_examples)
show_batch(raw_records)
Train and evaluate
We follow the COCO challenge tradition to evaluate the accuracy of object detection based on mAP(mean Average Precision). Please check here for detail explanation of how evaluation metrics for detection task is done.
IoU: is defined as the area of the intersection divided by the area of the union of a predicted bounding box and ground truth bounding box.
model, eval_logs = tfm.core.train_lib.run_experiment(
distribution_strategy=distribution_strategy,
task=task,
mode="train_and_eval",
params=exp_config,
model_dir=model_dir,
run_post_eval=True)
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
WARNING:tensorflow:`tf.keras.layers.experimental.SyncBatchNormalization` endpoint is deprecated and will be removed in a future release. Please use `tf.keras.layers.BatchNormalization` with parameter `synchronized` set to True.
/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/keras/src/engine/functional.py:642: UserWarning: Input dict contained keys ['6'] which did not match any model input. They will be ignored by the model.
inputs = self._flatten_to_reference_inputs(inputs)
WARNING:tensorflow:`tf.keras.layers.experimental.SyncBatchNormalization` endpoint is deprecated and will be removed in a future release. Please use `tf.keras.layers.BatchNormalization` with parameter `synchronized` set to True.
/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/keras/src/initializers/initializers.py:120: UserWarning: The initializer VarianceScaling is unseeded and being called multiple times, which will return identical values each time (even if the initializer is unseeded). Please update your code to provide a seed to the initializer, or avoid using the same initializer instance more than once.
warnings.warn(
loading annotations into memory...
Done (t=0.01s)
creating index...
index created!
restoring or initializing model...
INFO:tensorflow:Customized initialization is done through the passed `init_fn`.
INFO:tensorflow:Customized initialization is done through the passed `init_fn`.
train | step: 0 | training until step 200...
W0000 00:00:1701347174.666189 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -56 } dim { size: -42 } dim { size: -43 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -3 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -3 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -3 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } }
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 101 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 101 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 101 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
INFO:tensorflow:Collective all_reduce tensors: 101 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1
train | step: 200 | steps/sec: 1.3 | output:
{'frcnn_box_loss': 0.31850263,
'frcnn_cls_loss': 0.05660701,
'learning_rate': 0.06828698,
'mask_loss': 0.5251324,
'model_loss': 1.0341916,
'rpn_box_loss': 0.0608424,
'rpn_score_loss': 0.073107146,
'total_loss': 1.3348999,
'training_loss': 1.3348999}
saved checkpoint to ./trained_model/ckpt-200.
eval | step: 200 | running 200 steps of evaluation...
W0000 00:00:1701347326.414129 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } }
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=1.55s).
Accumulating evaluation results...
DONE (t=0.37s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.003
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.018
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.004
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.010
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.009
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.027
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.049
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.007
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.061
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.096
Running per image evaluation...
Evaluate annotation type *segm*
DONE (t=1.77s).
Accumulating evaluation results...
DONE (t=0.36s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.002
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.013
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.010
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.008
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.024
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.036
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.002
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.021
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.099
eval | step: 200 | steps/sec: 2.5 | eval time: 80.1 sec | output:
{'AP': 0.0034739533,
'AP50': 0.01818383,
'AP75': 0.000105925246,
'APl': 0.009990587,
'APm': 0.0038059496,
'APs': 0.00014011688,
'ARl': 0.096254684,
'ARm': 0.060511984,
'ARmax1': 0.008508347,
'ARmax10': 0.026843267,
'ARmax100': 0.04902959,
'ARs': 0.0065315315,
'mask_AP': 0.0021072333,
'mask_AP50': 0.012642865,
'mask_AP75': 1.1583788e-05,
'mask_APl': 0.010214079,
'mask_APm': 0.001238946,
'mask_APs': 5.1088673e-06,
'mask_ARl': 0.09868914,
'mask_ARm': 0.021187363,
'mask_ARmax1': 0.008023694,
'mask_ARmax10': 0.02381474,
'mask_ARmax100': 0.035661805,
'mask_ARs': 0.0015765766,
'steps_per_second': 2.49587810524514,
'validation_loss': 0.0}
train | step: 200 | training until step 400...
train | step: 400 | steps/sec: 1.7 | output:
{'frcnn_box_loss': 0.3148728,
'frcnn_cls_loss': 0.04683144,
'learning_rate': 0.06331559,
'mask_loss': 0.41505823,
'model_loss': 0.8509541,
'rpn_box_loss': 0.054795396,
'rpn_score_loss': 0.019396221,
'total_loss': 1.1508584,
'training_loss': 1.1508584}
saved checkpoint to ./trained_model/ckpt-400.
eval | step: 400 | running 200 steps of evaluation...
W0000 00:00:1701347440.748884 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } }
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=0.96s).
Accumulating evaluation results...
DONE (t=0.31s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.038
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.109
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.018
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.023
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.104
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.049
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.074
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.077
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.005
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.055
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.201
Running per image evaluation...
Evaluate annotation type *segm*
DONE (t=1.08s).
Accumulating evaluation results...
DONE (t=0.30s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.026
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.086
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.003
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.012
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.076
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.036
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.051
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.052
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.024
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.153
eval | step: 400 | steps/sec: 4.5 | eval time: 44.7 sec | output:
{'AP': 0.037587434,
'AP50': 0.1090748,
'AP75': 0.018366594,
'APl': 0.10382032,
'APm': 0.022636896,
'APs': 0.0011642236,
'ARl': 0.20149812,
'ARm': 0.054738563,
'ARmax1': 0.04948842,
'ARmax10': 0.07442111,
'ARmax100': 0.07727517,
'ARs': 0.0054054055,
'mask_AP': 0.025703182,
'mask_AP50': 0.08565975,
'mask_AP75': 0.0030623602,
'mask_APl': 0.07599234,
'mask_APm': 0.012238867,
'mask_APs': 9.593982e-07,
'mask_ARl': 0.15299626,
'mask_ARm': 0.02369281,
'mask_ARmax1': 0.0364028,
'mask_ARmax10': 0.050511576,
'mask_ARmax100': 0.051857837,
'mask_ARs': 0.00022522523,
'steps_per_second': 4.477373324644756,
'validation_loss': 0.0}
train | step: 400 | training until step 600...
train | step: 600 | steps/sec: 2.5 | output:
{'frcnn_box_loss': 0.27767265,
'frcnn_cls_loss': 0.049189795,
'learning_rate': 0.055572484,
'mask_loss': 0.39033934,
'model_loss': 0.7880812,
'rpn_box_loss': 0.051621474,
'rpn_score_loss': 0.019257905,
'total_loss': 1.0869627,
'training_loss': 1.0869627}
saved checkpoint to ./trained_model/ckpt-600.
eval | step: 600 | running 200 steps of evaluation...
W0000 00:00:1701347519.556857 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } }
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=1.53s).
Accumulating evaluation results...
DONE (t=0.34s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.058
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.147
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.035
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.003
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.035
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.161
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.067
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.094
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.108
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.027
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.099
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.244
Running per image evaluation...
Evaluate annotation type *segm*
DONE (t=1.71s).
Accumulating evaluation results...
DONE (t=0.33s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.029
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.099
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.005
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.010
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.098
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.041
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.052
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.054
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.030
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.155
eval | step: 600 | steps/sec: 4.2 | eval time: 47.9 sec | output:
{'AP': 0.057559177,
'AP50': 0.14743358,
'AP75': 0.034844287,
'APl': 0.1611763,
'APm': 0.035119582,
'APs': 0.0034293495,
'ARl': 0.24419476,
'ARm': 0.09869281,
'ARmax1': 0.0665136,
'ARmax10': 0.0941388,
'ARmax100': 0.10835528,
'ARs': 0.026576577,
'mask_AP': 0.028755136,
'mask_AP50': 0.0986329,
'mask_AP75': 0.00467551,
'mask_APl': 0.09832131,
'mask_APm': 0.010138089,
'mask_APs': 1.7697794e-06,
'mask_ARl': 0.15505618,
'mask_ARm': 0.030337691,
'mask_ARmax1': 0.040624514,
'mask_ARmax10': 0.052256178,
'mask_ARmax100': 0.05403324,
'mask_ARs': 0.0009009009,
'steps_per_second': 4.171504081290655,
'validation_loss': 0.0}
train | step: 600 | training until step 800...
train | step: 800 | steps/sec: 2.4 | output:
{'frcnn_box_loss': 0.28230885,
'frcnn_cls_loss': 0.043198194,
'learning_rate': 0.045815594,
'mask_loss': 0.38323456,
'model_loss': 0.77104104,
'rpn_box_loss': 0.046326794,
'rpn_score_loss': 0.015972756,
'total_loss': 1.0689586,
'training_loss': 1.0689586}
saved checkpoint to ./trained_model/ckpt-800.
eval | step: 800 | running 200 steps of evaluation...
W0000 00:00:1701347601.529665 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } }
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=1.01s).
Accumulating evaluation results...
DONE (t=0.32s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.063
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.147
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.046
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.004
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.037
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.177
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.072
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.097
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.103
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.015
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.078
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.256
Running per image evaluation...
Evaluate annotation type *segm*
DONE (t=1.14s).
Accumulating evaluation results...
DONE (t=0.30s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.045
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.124
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.017
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.018
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.136
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.053
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.064
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.065
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.030
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.192
eval | step: 800 | steps/sec: 4.4 | eval time: 45.0 sec | output:
{'AP': 0.063469686,
'AP50': 0.1473477,
'AP75': 0.045820855,
'APl': 0.17694354,
'APm': 0.03674903,
'APs': 0.003920865,
'ARl': 0.25561798,
'ARm': 0.07761438,
'ARmax1': 0.07167474,
'ARmax10': 0.09676898,
'ARmax100': 0.10253096,
'ARs': 0.014639639,
'mask_AP': 0.04488069,
'mask_AP50': 0.12370826,
'mask_AP75': 0.0165427,
'mask_APl': 0.1360923,
'mask_APm': 0.017513687,
'mask_APs': 5.2146588e-05,
'mask_ARl': 0.19232209,
'mask_ARm': 0.029575163,
'mask_ARmax1': 0.053419493,
'mask_ARmax10': 0.064243406,
'mask_ARmax100': 0.06532041,
'mask_ARs': 0.0011261262,
'steps_per_second': 4.4475057268487275,
'validation_loss': 0.0}
train | step: 800 | training until step 1000...
train | step: 1000 | steps/sec: 2.5 | output:
{'frcnn_box_loss': 0.26871693,
'frcnn_cls_loss': 0.04368285,
'learning_rate': 0.034999996,
'mask_loss': 0.38002,
'model_loss': 0.7526051,
'rpn_box_loss': 0.044981632,
'rpn_score_loss': 0.015203744,
'total_loss': 1.0497146,
'training_loss': 1.0497146}
saved checkpoint to ./trained_model/ckpt-1000.
eval | step: 1000 | running 200 steps of evaluation...
W0000 00:00:1701347680.528202 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } }
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=0.98s).
Accumulating evaluation results...
DONE (t=0.30s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.078
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.165
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.065
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.010
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.051
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.205
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.083
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.107
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.110
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.019
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.088
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.267
Running per image evaluation...
Evaluate annotation type *segm*
DONE (t=1.05s).
Accumulating evaluation results...
DONE (t=0.30s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.046
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.129
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.017
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.017
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.143
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.055
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.064
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.065
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.030
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.190
eval | step: 1000 | steps/sec: 4.4 | eval time: 45.9 sec | output:
{'AP': 0.078015566,
'AP50': 0.16489986,
'AP75': 0.06506885,
'APl': 0.20505275,
'APm': 0.0508199,
'APs': 0.009842132,
'ARl': 0.26666668,
'ARm': 0.0875817,
'ARmax1': 0.08303716,
'ARmax10': 0.10705439,
'ARmax100': 0.11001615,
'ARs': 0.018693693,
'mask_AP': 0.045874245,
'mask_AP50': 0.12868273,
'mask_AP75': 0.016570596,
'mask_APl': 0.14324915,
'mask_APm': 0.017211707,
'mask_APs': 9.338933e-05,
'mask_ARl': 0.18988764,
'mask_ARm': 0.030392157,
'mask_ARmax1': 0.0547119,
'mask_ARmax10': 0.0638126,
'mask_ARmax100': 0.06483576,
'mask_ARs': 0.0009009009,
'steps_per_second': 4.3583434846159985,
'validation_loss': 0.0}
train | step: 1000 | training until step 1200...
train | step: 1200 | steps/sec: 2.5 | output:
{'frcnn_box_loss': 0.24772172,
'frcnn_cls_loss': 0.0436343,
'learning_rate': 0.024184398,
'mask_loss': 0.36858365,
'model_loss': 0.72140527,
'rpn_box_loss': 0.045137476,
'rpn_score_loss': 0.016328312,
'total_loss': 1.0178626,
'training_loss': 1.0178626}
saved checkpoint to ./trained_model/ckpt-1200.
eval | step: 1200 | running 200 steps of evaluation...
W0000 00:00:1701347760.342535 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } }
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=1.15s).
Accumulating evaluation results...
DONE (t=0.31s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.084
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.176
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.069
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.010
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.056
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.219
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.090
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.114
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.124
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.035
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.110
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.277
Running per image evaluation...
Evaluate annotation type *segm*
DONE (t=1.28s).
Accumulating evaluation results...
DONE (t=0.31s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.048
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.125
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.024
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.016
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.153
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.059
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.067
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.068
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.002
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.037
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.196
eval | step: 1200 | steps/sec: 4.3 | eval time: 46.4 sec | output:
{'AP': 0.08426202,
'AP50': 0.17574485,
'AP75': 0.06948364,
'APl': 0.21902785,
'APm': 0.0561062,
'APs': 0.010037346,
'ARl': 0.27734083,
'ARm': 0.10996732,
'ARmax1': 0.0897382,
'ARmax10': 0.114347786,
'ARmax100': 0.12382544,
'ARs': 0.03536036,
'mask_AP': 0.04775647,
'mask_AP50': 0.12510313,
'mask_AP75': 0.023735445,
'mask_APl': 0.15327115,
'mask_APm': 0.015975025,
'mask_APs': 9.356999e-05,
'mask_ARl': 0.19606742,
'mask_ARm': 0.036764707,
'mask_ARmax1': 0.05893583,
'mask_ARmax10': 0.06712107,
'mask_ARmax100': 0.068467334,
'mask_ARs': 0.0018018018,
'steps_per_second': 4.310460102047628,
'validation_loss': 0.0}
train | step: 1200 | training until step 1400...
train | step: 1400 | steps/sec: 2.5 | output:
{'frcnn_box_loss': 0.23599713,
'frcnn_cls_loss': 0.041378804,
'learning_rate': 0.014427517,
'mask_loss': 0.35429612,
'model_loss': 0.68914723,
'rpn_box_loss': 0.042537488,
'rpn_score_loss': 0.014937655,
'total_loss': 0.98513216,
'training_loss': 0.98513216}
saved checkpoint to ./trained_model/ckpt-1400.
eval | step: 1400 | running 200 steps of evaluation...
W0000 00:00:1701347840.710868 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } }
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=1.00s).
Accumulating evaluation results...
DONE (t=0.30s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.088
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.177
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.075
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.011
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.059
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.226
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.091
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.115
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.122
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.029
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.103
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.282
Running per image evaluation...
Evaluate annotation type *segm*
DONE (t=1.09s).
Accumulating evaluation results...
DONE (t=0.29s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.051
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.133
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.027
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.019
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.156
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.060
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.070
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.071
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.002
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.036
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.203
eval | step: 1400 | steps/sec: 4.5 | eval time: 44.5 sec | output:
{'AP': 0.087541394,
'AP50': 0.1765836,
'AP75': 0.074927665,
'APl': 0.22625497,
'APm': 0.05886792,
'APs': 0.011434166,
'ARl': 0.28220972,
'ARm': 0.10310458,
'ARmax1': 0.09084545,
'ARmax10': 0.11534733,
'ARmax100': 0.12186322,
'ARs': 0.029279279,
'mask_AP': 0.050579414,
'mask_AP50': 0.13304058,
'mask_AP75': 0.027463775,
'mask_APl': 0.15557747,
'mask_APm': 0.018948099,
'mask_APs': 0.00015400951,
'mask_ARl': 0.20262173,
'mask_ARm': 0.036111113,
'mask_ARmax1': 0.05988153,
'mask_ARmax10': 0.070113085,
'mask_ARmax100': 0.07059774,
'mask_ARs': 0.0018018018,
'steps_per_second': 4.490972982132935,
'validation_loss': 0.0}
train | step: 1400 | training until step 1600...
train | step: 1600 | steps/sec: 2.5 | output:
{'frcnn_box_loss': 0.2448898,
'frcnn_cls_loss': 0.040846318,
'learning_rate': 0.006684403,
'mask_loss': 0.3572018,
'model_loss': 0.69579756,
'rpn_box_loss': 0.038723875,
'rpn_score_loss': 0.014135833,
'total_loss': 0.99148893,
'training_loss': 0.99148893}
saved checkpoint to ./trained_model/ckpt-1600.
eval | step: 1600 | running 200 steps of evaluation...
W0000 00:00:1701347919.382529 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } }
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=1.00s).
Accumulating evaluation results...
DONE (t=0.29s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.089
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.175
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.081
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.014
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.057
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.232
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.093
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.118
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.124
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.034
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.099
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.288
Running per image evaluation...
Evaluate annotation type *segm*
DONE (t=1.08s).
Accumulating evaluation results...
DONE (t=0.28s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.054
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.136
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.030
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.021
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.168
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.063
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.074
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.075
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.003
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.041
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.212
eval | step: 1600 | steps/sec: 4.4 | eval time: 45.6 sec | output:
{'AP': 0.08937628,
'AP50': 0.17525133,
'AP75': 0.0808516,
'APl': 0.2315524,
'APm': 0.057085045,
'APs': 0.014369107,
'ARl': 0.28820226,
'ARm': 0.09918301,
'ARmax1': 0.09332256,
'ARmax10': 0.11814755,
'ARmax100': 0.12353258,
'ARs': 0.03400901,
'mask_AP': 0.053880908,
'mask_AP50': 0.1363149,
'mask_AP75': 0.03003062,
'mask_APl': 0.16768122,
'mask_APm': 0.021485755,
'mask_APs': 0.0002800922,
'mask_ARl': 0.21161048,
'mask_ARm': 0.040849674,
'mask_ARmax1': 0.063327946,
'mask_ARmax10': 0.07399031,
'mask_ARmax100': 0.07495961,
'mask_ARs': 0.0027027028,
'steps_per_second': 4.384812711815325,
'validation_loss': 0.0}
train | step: 1600 | training until step 1800...
train | step: 1800 | steps/sec: 2.5 | output:
{'frcnn_box_loss': 0.23585029,
'frcnn_cls_loss': 0.039750163,
'learning_rate': 0.0017130232,
'mask_loss': 0.35994247,
'model_loss': 0.6895491,
'rpn_box_loss': 0.040137492,
'rpn_score_loss': 0.013868618,
'total_loss': 0.9850925,
'training_loss': 0.9850925}
saved checkpoint to ./trained_model/ckpt-1800.
eval | step: 1800 | running 200 steps of evaluation...
W0000 00:00:1701347999.044772 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } }
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=1.04s).
Accumulating evaluation results...
DONE (t=0.30s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.089
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.177
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.085
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.012
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.058
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.230
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.092
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.117
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.123
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.034
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.102
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.282
Running per image evaluation...
Evaluate annotation type *segm*
DONE (t=1.12s).
Accumulating evaluation results...
DONE (t=0.29s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.051
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.133
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.025
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.019
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.159
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.060
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.069
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.070
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.003
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.036
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.200
eval | step: 1800 | steps/sec: 4.5 | eval time: 44.7 sec | output:
{'AP': 0.08882947,
'AP50': 0.1769001,
'AP75': 0.084709905,
'APl': 0.23017395,
'APm': 0.05795139,
'APs': 0.012462094,
'ARl': 0.282397,
'ARm': 0.10163399,
'ARmax1': 0.09213786,
'ARmax10': 0.11690899,
'ARmax100': 0.122886375,
'ARs': 0.03445946,
'mask_AP': 0.050573327,
'mask_AP50': 0.13258772,
'mask_AP75': 0.025201378,
'mask_APl': 0.15921223,
'mask_APm': 0.019294621,
'mask_APs': 0.00025428535,
'mask_ARl': 0.20018727,
'mask_ARm': 0.03627451,
'mask_ARmax1': 0.06015078,
'mask_ARmax10': 0.06919763,
'mask_ARmax100': 0.07022078,
'mask_ARs': 0.002927928,
'steps_per_second': 4.474347551876668,
'validation_loss': 0.0}
train | step: 1800 | training until step 2000...
train | step: 2000 | steps/sec: 2.5 | output:
{'frcnn_box_loss': 0.22732982,
'frcnn_cls_loss': 0.04367072,
'learning_rate': 0.0,
'mask_loss': 0.35671493,
'model_loss': 0.68381965,
'rpn_box_loss': 0.040140744,
'rpn_score_loss': 0.01596347,
'total_loss': 0.9793183,
'training_loss': 0.9793183}
saved checkpoint to ./trained_model/ckpt-2000.
eval | step: 2000 | running 200 steps of evaluation...
W0000 00:00:1701348077.624909 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } }
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=1.05s).
Accumulating evaluation results...
DONE (t=0.30s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.091
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.178
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.086
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.013
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.062
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.233
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.093
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.119
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.125
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.035
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.103
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.286
Running per image evaluation...
Evaluate annotation type *segm*
DONE (t=1.12s).
Accumulating evaluation results...
DONE (t=0.29s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.053
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.136
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.028
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.022
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.164
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.062
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.072
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.073
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.003
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.040
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.207
eval | step: 2000 | steps/sec: 4.4 | eval time: 45.7 sec | output:
{'AP': 0.09090912,
'AP50': 0.17810935,
'AP75': 0.08558971,
'APl': 0.23334582,
'APm': 0.0617902,
'APs': 0.013224964,
'ARl': 0.2863296,
'ARm': 0.10294118,
'ARmax1': 0.09337641,
'ARmax10': 0.11895531,
'ARmax100': 0.124663435,
'ARs': 0.035135135,
'mask_AP': 0.053071458,
'mask_AP50': 0.13569556,
'mask_AP75': 0.028363172,
'mask_APl': 0.16439752,
'mask_APm': 0.022396944,
'mask_APs': 0.00038678324,
'mask_ARl': 0.20692883,
'mask_ARm': 0.039542485,
'mask_ARmax1': 0.062250942,
'mask_ARmax10': 0.0724825,
'mask_ARmax100': 0.073236406,
'mask_ARs': 0.002927928,
'steps_per_second': 4.3735250426509005,
'validation_loss': 0.0}
eval | step: 2000 | running 200 steps of evaluation...
W0000 00:00:1701348123.440153 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } }
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=1.01s).
Accumulating evaluation results...
DONE (t=0.29s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.091
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.178
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.086
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.013
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.062
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.233
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.093
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.119
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.125
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.035
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.103
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.286
Running per image evaluation...
Evaluate annotation type *segm*
DONE (t=1.10s).
Accumulating evaluation results...
DONE (t=0.30s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.053
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.136
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.028
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.022
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.164
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.062
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.072
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.073
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.003
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.040
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.207
eval | step: 2000 | steps/sec: 4.4 | eval time: 45.8 sec | output:
{'AP': 0.09090912,
'AP50': 0.17810935,
'AP75': 0.08558971,
'APl': 0.23334582,
'APm': 0.0617902,
'APs': 0.013224964,
'ARl': 0.2863296,
'ARm': 0.10294118,
'ARmax1': 0.09337641,
'ARmax10': 0.11895531,
'ARmax100': 0.124663435,
'ARs': 0.035135135,
'mask_AP': 0.053071458,
'mask_AP50': 0.13569556,
'mask_AP75': 0.028363172,
'mask_APl': 0.16439752,
'mask_APm': 0.022396944,
'mask_APs': 0.00038678324,
'mask_ARl': 0.20692883,
'mask_ARm': 0.039542485,
'mask_ARmax1': 0.062250942,
'mask_ARmax10': 0.0724825,
'mask_ARmax100': 0.073236406,
'mask_ARs': 0.002927928,
'steps_per_second': 4.370002598316903,
'validation_loss': 0.0}
Load logs in tensorboard
%load_ext tensorboard
%tensorboard --logdir "./trained_model"
Saving and exporting the trained model
The keras.Model
object returned by train_lib.run_experiment
expects the data to be normalized by the dataset loader using the same mean and variance statiscics in preprocess_ops.normalize_image(image, offset=MEAN_RGB, scale=STDDEV_RGB)
. This export function handles those details, so you can pass tf.uint8
images and get the correct results.
export_saved_model_lib.export_inference_graph(
input_type="image_tensor",
batch_size=1,
input_image_size=[HEIGHT, WIDTH],
params=exp_config,
checkpoint_path=tf.train.latest_checkpoint(model_dir),
export_dir=export_dir)
/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/keras/src/engine/functional.py:642: UserWarning: Input dict contained keys ['6'] which did not match any model input. They will be ignored by the model.
inputs = self._flatten_to_reference_inputs(inputs)
WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.maskrcnn_model.MaskRCNNModel object at 0x7f90444a1e50>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.maskrcnn_model.MaskRCNNModel object at 0x7f90444a1e50>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f9371926460>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f9371926460>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f902c4d7250>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f902c4d7250>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f90c84cc850>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f90c84cc850>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f92cd278250>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f92cd278250>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f90443add00>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f90443add00>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f90445fe4c0>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f90445fe4c0>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f902c505d00>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f902c505d00>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.layers.detection_generator.DetectionGenerator object at 0x7f90c0603310>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.layers.detection_generator.DetectionGenerator object at 0x7f90c0603310>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.layers.mask_sampler.MaskSampler object at 0x7f9044492a60>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.layers.mask_sampler.MaskSampler object at 0x7f9044492a60>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.layers.roi_sampler.ROISampler object at 0x7f902c2afee0>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.layers.roi_sampler.ROISampler object at 0x7f902c2afee0>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.layers.box_sampler.BoxSampler object at 0x7f90c0615220>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.layers.box_sampler.BoxSampler object at 0x7f90c0615220>, because it is not built.
INFO:tensorflow:Assets written to: ./exported_model/assets
INFO:tensorflow:Assets written to: ./exported_model/assets
Inference from Trained Model
def load_image_into_numpy_array(path):
"""Load an image from file into a numpy array.
Puts image into numpy array to feed into tensorflow graph.
Note that by convention we put it into a numpy array with shape
(height, width, channels), where channels=3 for RGB.
Args:
path: the file path to the image
Returns:
uint8 numpy array with shape (img_height, img_width, 3)
"""
image = None
if(path.startswith('http')):
response = urlopen(path)
image_data = response.read()
image_data = BytesIO(image_data)
image = Image.open(image_data)
else:
image_data = tf.io.gfile.GFile(path, 'rb').read()
image = Image.open(BytesIO(image_data))
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(1, im_height, im_width, 3)).astype(np.uint8)
def build_inputs_for_object_detection(image, input_image_size):
"""Builds Object Detection model inputs for serving."""
image, _ = resize_and_crop_image(
image,
input_image_size,
padded_size=input_image_size,
aug_scale_min=1.0,
aug_scale_max=1.0)
return image
Visualize test data
num_of_examples = 3
test_tfrecords = tf.io.gfile.glob('./lvis_tfrecords/val*')
test_ds = tf.data.TFRecordDataset(test_tfrecords).take(num_of_examples)
show_batch(test_ds)
Importing SavedModel
imported = tf.saved_model.load(export_dir)
model_fn = imported.signatures['serving_default']
WARNING:absl:Importing a function (__inference_internal_grad_fn_419718) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416667) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415362) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414651) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416415) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416739) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418449) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418179) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417081) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418368) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419556) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419097) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414750) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419124) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417927) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418674) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416847) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418899) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415020) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414399) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418197) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418476) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416775) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415272) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416685) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416289) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417990) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417117) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416073) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419430) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414372) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417522) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415776) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419385) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417171) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417396) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417279) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418188) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413499) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416181) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416019) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418044) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413949) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416343) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413760) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417324) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415344) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416235) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417846) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415308) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415902) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414291) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418773) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416280) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415092) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417567) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413679) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418962) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413661) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415200) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414786) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416010) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413985) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417954) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414354) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416703) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414516) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419349) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416091) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417297) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419646) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415830) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414435) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415263) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419493) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418620) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419439) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417261) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417873) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417828) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413976) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419601) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416100) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419079) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414885) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416118) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415479) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419484) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419088) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415146) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417801) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417153) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414147) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414957) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417270) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416694) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413805) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417882) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416316) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417450) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416514) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419304) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414552) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413787) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416568) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417108) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415326) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419358) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417945) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414156) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414462) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418008) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415452) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419070) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418107) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417243) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416046) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416559) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413580) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414300) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419673) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414255) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415758) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413967) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414795) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414687) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416307) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416469) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414741) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418422) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414192) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415938) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414030) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415560) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415038) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415380) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418548) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414228) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416928) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418872) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417423) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417711) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413850) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416748) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418494) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419052) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417837) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417180) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419565) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416640) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417675) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416919) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417342) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414723) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414408) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416226) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415056) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414597) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415983) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418485) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415686) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416649) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415173) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418719) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414876) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417918) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416028) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415866) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414660) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415893) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418305) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419214) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413589) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418062) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419232) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417693) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419421) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418350) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417549) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415884) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414111) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417756) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415821) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418881) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413625) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413859) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417405) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417072) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417639) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419511) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415209) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418278) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416631) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418683) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414084) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416451) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418935) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418566) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413634) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419277) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417000) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416460) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416397) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418224) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415929) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415992) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417513) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415677) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415137) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417864) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419007) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413877) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414867) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417666) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415515) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416262) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417684) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414804) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419196) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419268) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419295) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416163) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416802) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418026) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414453) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419250) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415488) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415416) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417486) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415920) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418242) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418647) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415182) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415587) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413643) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413454) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415425) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419655) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419520) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414903) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418359) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415083) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413733) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419403) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417468) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418377) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414129) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417090) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418845) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415839) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415164) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416271) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415524) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414381) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417144) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416658) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414849) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419583) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417036) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419151) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418791) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419241) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417216) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413940) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416055) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414489) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414093) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414102) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417900) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415947) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414219) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417045) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414012) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415875) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418116) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414939) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413544) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419457) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418611) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414993) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419547) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414696) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413688) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417333) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414615) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417702) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419034) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418584) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415731) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416001) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418170) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418953) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413841) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413706) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414588) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418593) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418665) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419205) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416523) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415767) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417414) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414759) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415398) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416433) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413607) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418971) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417603) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413562) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417558) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416829) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413535) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415245) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418125) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419367) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419412) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419259) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414336) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416478) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416325) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413652) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413517) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418854) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417459) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416550) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415281) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413814) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419691) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416208) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414543) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414039) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414165) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415911) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417999) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414309) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415722) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414975) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414948) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419628) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415299) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415011) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416424) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416532) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417855) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416154) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416064) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415749) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415542) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417378) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419133) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414966) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417225) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419106) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419016) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414570) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414840) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418656) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415353) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415434) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415128) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413481) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418386) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414858) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415065) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419286) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419142) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418728) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416910) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413445) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418458) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417315) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416406) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417936) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419700) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414057) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417621) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416883) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416856) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414003) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413958) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418251) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416199) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414120) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417432) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417810) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416352) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416361) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417018) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415074) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414579) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416784) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414327) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416811) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415668) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413715) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416145) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414624) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416964) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416676) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416082) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418746) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414561) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414066) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419736) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419727) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419376) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414534) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419169) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415002) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419025) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418332) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418233) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416370) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416793) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414669) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413526) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415110) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416613) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414831) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413571) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419187) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413778) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417198) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418926) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414021) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415254) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418629) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419331) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419637) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418143) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417747) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415803) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416172) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417387) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414525) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416901) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419619) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418269) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417720) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414237) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415389) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416109) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415974) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415335) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418989) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419160) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416127) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417909) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417774) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414363) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419313) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414210) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414345) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418800) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417819) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418890) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415659) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413616) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418692) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416541) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417972) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415857) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417630) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415704) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414642) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415569) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416982) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414714) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413751) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413904) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416298) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416991) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418755) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414282) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417540) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415506) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418944) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418530) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418260) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418287) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419178) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415578) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417009) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413868) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415155) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418467) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415218) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415236) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418053) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419061) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414732) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414930) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419529) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415119) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413886) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414633) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416892) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416037) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416487) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414417) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414201) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417207) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415596) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414912) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415794) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416244) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416766) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419322) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418431) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413796) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418521) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414606) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415461) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417234) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415695) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417963) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415632) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414984) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417792) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415407) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414075) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416388) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413508) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419745) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418206) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414822) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414768) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417585) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419448) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419340) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417135) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418215) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417126) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414507) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416874) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418098) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413769) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413931) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414471) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419115) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414813) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414246) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417531) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413436) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417369) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416721) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416379) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417504) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418512) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415533) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414921) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417477) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414498) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418836) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419043) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415227) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415317) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416217) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413553) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418827) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413913) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413922) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419592) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417783) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416973) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418395) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417648) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415290) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418557) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414894) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415614) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413823) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417594) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419538) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415623) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417612) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414138) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419475) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417360) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415650) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418908) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418071) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416622) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416190) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418035) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416712) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418503) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418152) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416586) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419610) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417162) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419682) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418413) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413895) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414777) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418080) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413670) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418980) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416838) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416595) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415497) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413490) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417099) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418764) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417063) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415812) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416730) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415605) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417306) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416334) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414678) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415101) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413472) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415371) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414048) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419664) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416955) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416757) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418314) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417657) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415191) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417495) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418917) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418539) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418161) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418863) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414183) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416505) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418737) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417738) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418134) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415551) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414390) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414264) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417288) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415740) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419502) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418323) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418296) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416577) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415443) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413463) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418638) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415029) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418701) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417441) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417252) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417189) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416136) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414480) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418017) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417576) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418782) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418404) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413832) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416253) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416937) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415713) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415785) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418440) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419574) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417891) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416946) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413598) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414174) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418089) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419394) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417765) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418809) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414426) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413994) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418341) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416442) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418818) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418602) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417981) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417054) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413697) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414705) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417729) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416604) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419466) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418575) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419223) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413742) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418998) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416496) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415965) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_418710) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415848) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_419709) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415956) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417351) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415047) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416865) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414273) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_416820) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415641) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_417027) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414318) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_414444) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_413724) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
WARNING:absl:Importing a function (__inference_internal_grad_fn_415470) with ops with unsaved cust
Visualize predictions
def reframe_image_corners_relative_to_boxes(boxes):
"""Reframe the image corners ([0, 0, 1, 1]) to be relative to boxes.
The local coordinate frame of each box is assumed to be relative to
its own for corners.
Args:
boxes: A float tensor of [num_boxes, 4] of (ymin, xmin, ymax, xmax)
coordinates in relative coordinate space of each bounding box.
Returns:
reframed_boxes: Reframes boxes with same shape as input.
"""
ymin, xmin, ymax, xmax = (boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3])
height = tf.maximum(ymax - ymin, 1e-4)
width = tf.maximum(xmax - xmin, 1e-4)
ymin_out = (0 - ymin) / height
xmin_out = (0 - xmin) / width
ymax_out = (1 - ymin) / height
xmax_out = (1 - xmin) / width
return tf.stack([ymin_out, xmin_out, ymax_out, xmax_out], axis=1)
def reframe_box_masks_to_image_masks(box_masks, boxes, image_height,
image_width, resize_method='bilinear'):
"""Transforms the box masks back to full image masks.
Embeds masks in bounding boxes of larger masks whose shapes correspond to
image shape.
Args:
box_masks: A tensor of size [num_masks, mask_height, mask_width].
boxes: A tf.float32 tensor of size [num_masks, 4] containing the box
corners. Row i contains [ymin, xmin, ymax, xmax] of the box
corresponding to mask i. Note that the box corners are in
normalized coordinates.
image_height: Image height. The output mask will have the same height as
the image height.
image_width: Image width. The output mask will have the same width as the
image width.
resize_method: The resize method, either 'bilinear' or 'nearest'. Note that
'bilinear' is only respected if box_masks is a float.
Returns:
A tensor of size [num_masks, image_height, image_width] with the same dtype
as `box_masks`.
"""
resize_method = 'nearest' if box_masks.dtype == tf.uint8 else resize_method
# TODO(rathodv): Make this a public function.
def reframe_box_masks_to_image_masks_default():
"""The default function when there are more than 0 box masks."""
num_boxes = tf.shape(box_masks)[0]
box_masks_expanded = tf.expand_dims(box_masks, axis=3)
resized_crops = tf.image.crop_and_resize(
image=box_masks_expanded,
boxes=reframe_image_corners_relative_to_boxes(boxes),
box_indices=tf.range(num_boxes),
crop_size=[image_height, image_width],
method=resize_method,
extrapolation_value=0)
return tf.cast(resized_crops, box_masks.dtype)
image_masks = tf.cond(
tf.shape(box_masks)[0] > 0,
reframe_box_masks_to_image_masks_default,
lambda: tf.zeros([0, image_height, image_width, 1], box_masks.dtype))
return tf.squeeze(image_masks, axis=3)
input_image_size = (HEIGHT, WIDTH)
plt.figure(figsize=(20, 20))
min_score_thresh = 0.40 # Change minimum score for threshold to see all bounding boxes confidences
for i, serialized_example in enumerate(test_ds):
plt.subplot(1, 3, i+1)
decoded_tensors = tf_ex_decoder.decode(serialized_example)
image = build_inputs_for_object_detection(decoded_tensors['image'], input_image_size)
image = tf.expand_dims(image, axis=0)
image = tf.cast(image, dtype = tf.uint8)
image_np = image[0].numpy()
result = model_fn(image)
# Visualize detection and masks
if 'detection_masks' in result:
# we need to convert np.arrays to tensors
detection_masks = tf.convert_to_tensor(result['detection_masks'][0])
detection_boxes = tf.convert_to_tensor(result['detection_boxes'][0])
detection_masks_reframed = reframe_box_masks_to_image_masks(
detection_masks, detection_boxes/256.0,
image_np.shape[0], image_np.shape[1])
detection_masks_reframed = tf.cast(
detection_masks_reframed > min_score_thresh,
np.uint8)
result['detection_masks_reframed'] = detection_masks_reframed.numpy()
visualization_utils.visualize_boxes_and_labels_on_image_array(
image_np,
result['detection_boxes'][0].numpy(),
(result['detection_classes'][0] + 0).numpy().astype(int),
result['detection_scores'][0].numpy(),
category_index=category_index,
use_normalized_coordinates=False,
max_boxes_to_draw=200,
min_score_thresh=min_score_thresh,
instance_masks=result.get('detection_masks_reframed', None),
line_thickness=4)
plt.imshow(image_np)
plt.axis("off")
plt.show()
:::info
Originally published on the TensorFlow website, this article appears here under a new headline and is licensed under CC BY 4.0. Code samples shared under the Apache 2.0 License.
:::