Table of Links
Abstract and 1 Introduction
1.1. Spatial Digital Twins (SDTs)
1.2. Applications
1.3. Different Components of SDTs
1.4. Scope of This Work and Contributions
2. Related Work and 2.1. Digital Twins and Variants
2.2. Spatial Digital Twin Case Studies
3. Building Blocks of Spatial Digital Twins and 3.1. Data Acquisition and Processing
3.2. Data Modeling, Storage and Management
3.3. Big Data Analytics System
3.4. Maps and GIS Based Middleware
3.5. Key Functional Components
4. Other Relevant Modern Technologies and 4.1. AI & ML
4.2. Blockchain
4.3. Cloud Computing
5. Challenges and Future Work, and 5.1. Multi-modal and Multi-resolution Data Acquisition
5.2. NLP for Spatial Queries and 5.3. Benchmarking the Databases and Big Data Platform for SDT
5.4. Automated Spatial Insights and 5.5. Multi-modal Analysis
5.6. Building Simulation Environment
5.7. Visualizing Complex and Diverse Interactions
5.8. Mitigating the Security and Privacy Concerns
6. Conclusion and References
5.8. Mitigating the Security and Privacy Concerns
Researchers have emphasised on the importance of integrating security and privacy solutions in digital twins to ensure the quality of services like providing data-driven decisions [104, 105]. Reliability, trust, transparency, integrity, authenticity, anonymity and selective disclosure are some of the security and privacy aspects that need attention to make DTs a success. The security and privacy challenges that have been identified for DTs in general also apply for SDTs. Besides, the use of location data imposes additional security and privacy concerns for the SDTs as location data may act as an identifier of an individual and may reveal sensitive information [106, 107]. For example, although mobility data of an individual allows an SDT to monitor traffic in indoor and outdoor spaces or contact tracing [108], continuous sharing of locations of an individual will allow others to know the individual’s movement trajectory and infer the places visited by the individual. If a place represents an individual’s office then the individual would be identified, and if a place is a liver clinic then it may reveal the individual’s sensitive health information. Researchers have developed techniques like obfuscation, k-anonymity and space transformation that trad-off between utility and privacy of location data.
There are a few works [109, 110, 111] that proposed countermeasures to prevent security and privacy attacks for DTs. In these works, blockchain technology [109], federated learning models [111], and cryptographic protocols [110] have been shown as techniques to address various security and privacy concerns. Considering that location data may raise new threats, future research should focus on identifying new security and privacy attacks, designing solutions to protect them, and investigating the applicability of existing security and privacy solutions for SDTs.
6. Conclusion
In this paper, a thorough and organized collection of spatial technologies is presented, forming the fundamental components of Spatial Digital Twins (SDTs). The building blocks of SDTs are categorized into four layers, and a comprehensive overview of key spatial technologies is provided for each layer, covering aspects such as data acquisition, processing, storage, and visualization. We have also presented how modern technologies like AI &ML, blockchain, and cloud computing can facilitate more efficient and effective SDTs. It is important to note that there is currently no existing study that specifically focuses on identifying these crucial technologies essential for the development of SDTs. Consequently, researchers and practitioners working in this multidisciplinary domain, particularly those with limited knowledge of geo-spatial advancements, may encounter difficulties in adopting these technologies for SDTs. Therefore, this interdisciplinary work holds immense potential in bridging the gaps among researchers and practitioners in fields such as geo-spatial, urban and transport engineering, and city planning.
References
[1] E. Glaessgen, D. Stargel, The digital twin paradigm for future nasa and us air force vehicles, in: 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, 2012, p. 1818.
[2] WGIC, Spatial digital twins: Global status, opportunities and the way forward (2022).
[3] W. Kritzinger, M. Karner, G. Traar, J. Henjes, W. Sihn, Digital twin in manufacturing: A categorical literature review and classification, Ifac-PapersOnline 51 (11) (2018) 1016–1022.
[4] F. Tao, Q. Qi, Make more digital twins, Nature 573 (7775) (2019) 490–491.
[5] G. Shao, M. Helu, Framework for a digital twin in manufacturing: Scope and requirements, Manufacturing Letters 24 (2020) 105–107.
[6] S. A. Rizvi, M. Umair, M. A. Cheema, Clustering of countries for COVID-19 cases based on disease prevalence, health systems and environmental indicators, Chaos, Solitons & Fractals 151 (2021) 111240.
[7] C. Semeraro, A. Olabi, H. Aljaghoub, A. H. Alami, M. Al Radi, M. Dassisti, M. A. Abdelkareem, Digital twin application in energy storage: Trends and challenges, Journal of Energy Storage 58 (2023) 106347.
[8] G. White, A. Zink, L. Codec´a, S. Clarke, A digital twin smart city for citizen feedback, Cities 110 (2021) 103064.
[9] T. Clemen, N. Ahmady-Moghaddam, U. A. Lenfers, F. Ocker, D. Osterholz, J. Str¨obele, D. Glake, Multi-agent systems and digital twins for smarter cities, in: SIGSIM-PADS ’21: SIGSIM Conference on Principles of Advanced Discrete Simulation, 2021, pp. 45–55.
[10] B. Lei, P. Janssen, J. Stoter, F. Biljecki, Challenges of urban digital twins: A systematic review and a delphi expert survey, Automation in Construction 147 (2023) 104716.
[11] F. Dembski, U. W¨ossner, M. Letzgus, M. Ruddat, C. Yamu, Urban digital twins for smart cities and citizens: The case study of herrenberg, germany, Sustainability 12 (6) (2020) 2307.
[12] G. Mylonas, A. Kalogeras, G. Kalogeras, C. Anagnostopoulos, C. Alexakos, L. Mu˜noz, Digital twins from smart manufacturing to smart cities: A survey, Ieee Access 9 (2021) 143222–143249.
[13] Arcgis, https://www.esri.com/en-us/digital-twin/overview/, accessed: 2023-05-08.
[14] Microsoft azure digital twins platform, https://azure.microsoft.com/en-us/products/digital-twins/, accessed: 2023-05-08.
[15] 3dexperience, https://www.3ds.com/3dexperience, accessed: 2023-05-08.
[16] Z. Wang, R. Gupta, K. Han, H. Wang, A. Ganlath, N. Ammar, P. Tiwari, Mobility digital twin: Concept, architecture, case study, and future challenges, IEEE Internet Things J. 9 (18) (2022) 17452–17467.
[17] Z. Fan, X. Yang, W. Yuan, R. Jiang, Q. Chen, X. Song, R. Shibasaki, Online trajectory prediction for metropolitan scale mobility digital twin, in: Proceedings of the 30th International Conference on Advances in Geographic Information Systems, SIGSPATIAL, 2022, pp. 103:1–103:12.
[18] E. VanDerHorn, S. Mahadevan, Digital twin: Generalization, characterization and implementation, Decis. Support Syst. 145 (2021) 113524. doi:10.1016/j.dss.2021.113524. URL https://doi.org/10.1016/j.dss.2021.113524
[19] G. Mylonas, A. P. Kalogeras, G. Kalogeras, C. Anagnostopoulos, C. Alexakos, L. Mu˜noz, Digital twins from smart manufacturing to smart cities: A survey, IEEE Access 9 (2021) 143222–143249. doi:10.1109/ACCESS.2021.3120843.
[20] H. Xia, Z. Liu, E. Maria, X. Liu, C. Lin, Study on city digital twin technologies for sustainable smart city design: A review and bibliometric analysis of geographic information system and building information modeling integration, Sustainable Cities and Society (2022) 104009.
[21] J. D¨ollner, Geospatial artificial intelligence: potentials of machine learning for 3d point clouds and geospatial digital twins, PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science 88 (2020) 15–24.
[22] E. Shahat, C. T. Hyun, C. Yeom, City digital twin potentials: A review and research agenda, Sustainability 13 (6) (2021) 3386.
[23] A digital twin-enhanced system for engineering product family design and optimization, Journal of Manufacturing Systems 57 (2020) 82–93. doi:https://doi.org/10.1016/j.jmsy.2020.08.011.
[24] Machine learning based digital twin framework for production optimization in petrochemical industry, International Journal of Information Management 49 (2019) 502–519. doi:https://doi.org/10.1016/j.ijinfomgt.2019.05.020.
[25] Digital twins in manufacturing: An assessment of key features, Procedia CIRP 97 (2021) 178–183, 8th CIRP Conference of Assembly Technology and Systems. doi:https://doi.org/10.1016/j.procir.2020.05.222.
[26] G. Sirigu, B. Carminati, E. Ferrari, Privacy and security issues for human digital twins, in: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), 2022, pp. 1–9. doi: 10.1109/TPS-ISA56441.2022.00011.
[27] W. Shengli, Is human digital twin possible?, Computer Methods and Programs in Biomedicine Update 1 (2021) 100014. doi:https://doi.org/10.1016/j.cmpbup.2021.100014. URL https://www.sciencedirect.com/science/article/pii/S2666990021000136
[28] K. P. Venkatesh, M. M. Raza, J. C. Kvedar, Health digital twins as tools for precision medicine: Considerations for computation, implementation, and regulation, npj Digit. Medicine 5 (2022). doi:10.1038/s41746-022-00694-7. URL https://doi.org/10.1038/s41746-022-00694-7
[29] K. Ahuja, D. Shah, S. Pareddy, F. Xhakaj, A. Ogan, Y. Agarwal, C. Harrison, Classroom digital twins with instrumentation-free gaze tracking, in: CHI ’21: CHI Conference on Human Factors in Computing Systems, Virtual Event / Yokohama, Japan, May 8-13, 2021, 2021, pp. 484:1–484:9.
[30] A survey of digital twin techniques in smart manufacturing and management of energy applications, Green Energy and Intelligent Transportation 1 (2) (2022) 100014. doi:https://doi.org/10.1016/j.geits.2022.100014.
[31] G. Schrotter, C. H¨urzeler, The digital twin of the city of zurich for urban planning, PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science 88 (1) (2020) 99–112.
[32] H. Li, H. Lu, C. S. Jensen, B. Tang, M. A. Cheema, Spatial data quality in the internet of things: Management, exploitation, and prospects, ACM Computing Surveys (CSUR) 55 (3) (2022) 1–41.
[33] A. Fahmin, S. Zhang, M. A. Cheema, A. N. Toosi, H. A. Rakha, Improving eco-friendly routing considering detailed mobility profiles, driving behavior and vehicle type, in: Databases Theory and Applications: 33rd Australasian Database Conference, ADC 2022, Sydney, NSW, Australia, September 2–4, 2022, Proceedings, Springer, 2022, pp. 128–140.
[34] H. J. Jo, Y. J. Jang, J. W. Lee, J. H. Oh, Dense thermal 3d point cloud generation of building envelope by drone-based photogrammetry, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 39 (2) (2021) 73–79.
[35] A. To, M. Liu, M. Hazeeq Bin Muhammad Hairul, J. G. Davis, J. S. Lee, H. Hesse, H. D. Nguyen, Drone-based ai and 3d reconstruction for digital twin augmentation, in: Social Computing and Social Media: Experience Design and Social Network Analysis: 13th International Conference, SCSM 2021, Held as Part of the 23rd HCI International Conference, HCII 2021, Virtual Event, July 24–29, 2021, Proceedings, Part I, Springer, 2021, pp. 511–529.
[36] D. M. Bot´ın-Sanabria, J. G. Lozoya-Reyes, R. C. Vargas-Maldonado, K. L. Rodr´ıguez-Hern´andez, R. A. Ram´ırezMendoza, M. A. Ram´ırez-Moreno, J. d. J. Lozoya-Santos, Digital twin for urban spaces: An application, in: Proceedings of the International Conference on Industrial Engineering and Operations Management, Monterrey, Mexico, 2021, pp. 3–5.
[37] H. Samet, Foundations of multidimensional and metric data structures, Morgan Kaufmann, 2006.
[38] R. Chen, J. Xie, Open source databases and their spatial extensions, Open source approaches in spatial data handling (2008) 105–129.
[39] C. Oracle, Oracle spatial, http://www. oracle. com/ (2000).
[40] A. Aitchison, Beginning spatial with SQL Server 2008, Apress, 2009.
[41] C. Strobl, Postgis (2008).
[42] D. Guliato, E. V. de Melo, R. M. Rangayyan, R. C. Soares, Postgresql-ie: An image-handling extension for postgresql, Journal of digital imaging 22 (2009) 149–165.
[43] D. Shukla, C. Shivnani, D. Shah, Comparing oracle spatial and postgres postgis, IJCSC 7 (2) (2016) 95–100. [44] A. F. Sveen, Efficient storage of heterogeneous geospatial data in spatial databases, Journal of Big Data 6 (1) (2019) 1–14.
[45] Z. Yao, C. Nagel, F. Kunde, G. Hudra, P. Willkomm, A. Donaubauer, T. Adolphi, T. H. Kolbe, 3dcitydb-a 3d geodatabase solution for the management, analysis, and visualization of semantic 3d city models based on citygml, Open Geospatial Data, Software and Standards 3 (1) (2018) 1–26.
[46] A. Davoudian, L. Chen, M. Liu, A survey on nosql stores, ACM Computing Surveys (CSUR) 51 (2) (2018) 1–43.
[47] S. Agarwal, K. Rajan, Performance analysis of mongodb versus postgis/postgresql databases for line intersection and point containment spatial queries, Spatial Information Research 24 (2016) 671–677.
[48] B. Baas, Nosql spatial–neo4j versus postgis, Master’s thesis (2012).
[49] M. Ben Brahim, W. Drira, F. Filali, N. Hamdi, Spatial data extension for cassandra nosql database, Journal of Big Data 3 (2016) 1–16.
[50] Gisformats, https://gisgeography.com/gis-formats/, accessed: 2023-05-08.
[51] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The hadoop distributed file system, in: 2010 IEEE 26th symposium on mass storage systems and technologies (MSST), Ieee, 2010, pp. 1–10.
[52] S. Salloum, R. Dautov, X. Chen, P. X. Peng, J. Z. Huang, Big data analytics on apache spark, International Journal of Data Science and Analytics 1 (2016) 145–164.
[53] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, J. Saltz, Hadoop gis: a high performance spatial data warehousing system over mapreduce, Proceedings of the VLDB Endowment 6 (11) (2013) 1009–1020.
[54] A. Eldawy, M. F. Mokbel, Spatialhadoop: A mapreduce framework for spatial data, in: 2015 IEEE 31st international conference on Data Engineering, IEEE, 2015, pp. 1352–1363.
[55] J. Yu, Z. Zhang, M. Sarwat, Spatial data management in apache spark: the geospark perspective and beyond, GeoInformatica 23 (2019) 37–78.
[56] S. Hagedorn, P. G¨otze, K.-U. Sattler, Big spatial data processing frameworks: Feature and performance evaluation., in: EDBT, 2017, pp. 490–493.
[57] S. Nishimura, S. Das, D. Agrawal, A. El Abbadi, Md-hbase: A scalable multi-dimensional data infrastructure for location aware services, in: 2011 IEEE 12th International Conference on Mobile Data Management, Vol. 1, IEEE, 2011, pp. 7–16.
[58] R. Li, H. He, R. Wang, S. Ruan, Y. Sui, J. Bao, Y. Zheng, Trajmesa: A distributed nosql storage engine for big trajectory data, in: 2020 IEEE 36th International Conference on Data Engineering (ICDE), IEEE, 2020, pp. 2002–2005.
[59] M. D. Kennedy, Introducing geographic information systems with ARCGIS: a workbook approach to learning GIS, John Wiley & Sons, 2013.
[60] G. Kurt Menke, R. Smith Jr, L. Pirelli, G. John Van Hoesen, et al., Mastering QGIS, Packt Publishing Ltd, 2016.
[61] Cmeet boston’s digital twin, https://www.esri.com/about/newsroom/blog/3d-gis-boston-digital-twin/, accessed: 20823-05-0. [62] Cesium, https://cesium.com/, accessed: 2023-05-08.
[63] Nsw digital twins, https://nsw.digitaltwin.terria.io/, accessed: 20823-05-0.
[64] Jts spatial libraries, https://locationtech.github.io/jts/jts-features.html, accessed: 20823-05-0.
[65] GEOS libraries, https://libgeos.org/, accessed: 20823-05-0.
[66] Spatial4j libraries, https://github.com/locationtech/spatial4j, accessed: 20823-05-0.
[67] Geopanda, https://geopandas.org/en/stable/, accessed: 20823-05-0.
[68] Python spatial algorithms and datastructures, https://docs.scipy.org/doc/scipy/reference/spatial.html, accessed: 20823-05-0.
[69] Python spatial analysis library, https://pysal.org/, accessed: 20823-05-0.
[70] Python libraries for trajectories, https://github.com/traja-team/traja, accessed: 20823-05-0.
[71] E. Westra, Python Geospatial Analysis Essentials, Packt Publishing Ltd, 2015.
[72] Hxdr, https://hxdr.com/, accessed: 2023-05-08. [73] Opencities, https://www.bentley.com/software/opencities-planner/, accessed: 2023-05-08.
[74] A. Arman, M. E. Ali, F. M. Choudhury, K. Abdullah, Vizq: A system for scalable processing of visibility queries in 3d spatial databases, in: Proceedings of the 2017 ACM on conference on information and knowledge management, 2017, pp. 2447–2450.
[75] M. E. Ali, S. S. Eusuf, K. Abdullah, F. M. Choudhury, J. S. Culpepper, T. Sellis, The maximum trajectory coverage query in spatial databases, Proceedings of the VLDB Endowment 12 (3).
[76] A. Kumar, P. Nagarkar, P. Nalhe, S. Vijayakumar, Deep learning driven natural languages text to sql query conversion: A survey, arXiv preprint arXiv:2208.04415 (2022).
[77] R. Ding, S. Han, Y. Xu, H. Zhang, D. Zhang, Quickinsights: Quick and automatic discovery of insights from multidimensional data, in: Proceedings of the 2019 International Conference on Management of Data, 2019, pp. 317–332.
[78] R. Martinez-Maldonado, V. Echeverria, G. Fernandez Nieto, S. Buckingham Shum, From data to insights: A layered storytelling approach for multimodal learning analytics, in: Proceedings of the 2020 chi conference on human factors in computing systems, 2020, pp. 1–15.
[79] C¸ . Demiralp, P. J. Haas, S. Parthasarathy, T. Pedapati, Foresight: Recommending visual insights, arXiv preprint arXiv:1707.03877 (2017).
[80] S. Boschert, R. Rosen, Digital twin—the simulation aspect, Mechatronic futures: Challenges and solutions for mechatronic systems and their designers (2016) 59–74.
[81] P. Biswas, T. Hashem, M. A. Cheema, Safest nearby neighbor queries in road networks, IEEE Transactions on Intelligent Transportation Systems (2023).
[82] K. Agalianos, S. Ponis, E. Aretoulaki, G. Plakas, O. Efthymiou, Discrete event simulation and digital twins: review and challenges for logistics, Procedia Manufacturing 51 (2020) 1636–1641.
[83] M. Schluse, J. Rossmann, From simulation to experimentable digital twins: Simulation-based development and operation of complex technical systems, in: 2016 IEEE International Symposium on Systems Engineering (ISSE), IEEE, 2016, pp. 1–6.
[84] M. Umair, M. A. Cheema, O. Cheema, H. Li, H. Lu, Impact of covid-19 on iot adoption in healthcare, smart homes, smart buildings, smart cities, transportation and industrial iot, Sensors 21 (11) (2021) 3838.
[85] M. Schluse, M. Priggemeyer, L. Atorf, J. Rossmann, Experimentable digital twins—streamlining simulation-based systems engineering for industry 4.0, IEEE Transactions on industrial informatics 14 (4) (2018) 1722–1731.
[86] Z. Gao, A. Paul, X. Wang, Guest editorial: Digital twinning: Integrating ai-ml and big data analytics for virtual
representation, IEEE Transactions on Industrial Informatics 18 (2) (2022) 1355–1358.
[87] H. Haße, B. Li, N. Weißenberg, J. Cirullies, B. Otto, Digital twin for real-time data processing in logistics, in: Artificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 27, Berlin: epubli GmbH, 2019, pp. 4–28.
[88] T. Ruppert, J. Abonyi, Integration of real-time locating systems into digital twins, Journal of industrial information integration 20 (2020) 100174.
[89] T. He, A. N. Toosi, N. Akbari, M. T. Islam, M. A. Cheema, An intent-based framework for vehicular edge computing, in: 2023 IEEE International Conference on Pervasive Computing and Communications (PerCom), IEEE, 2023, pp. 121–130.
[90] F. Alam, A. Toosi, M. Cheema, C. Cicconetti, P. Serrano, A. Iosup, Z. Tari, A. Sarvi, Serverless vehicular edge computing for the internet of vehicles, IEEE Internet Computing (2023).
[91] J. Jagannath, K. Ramezanpour, A. Jagannath, Digital twin virtualization with machine learning for iot and beyond 5g networks: research directions for security and optimal control, in: Proceedings of the 2022 ACM Workshop on Wireless Security and Machine Learning, 2022, pp. 81–86.
[92] J. Baranda, J. Mangues-Bafalluy, E. Zeydan, C. Casetti, C.-F. Chiasserini, M. Malinverno, C. Puligheddu, M. Groshev, C. Guimar˜aes, K. Tomakh, et al., Aiml-as-a-service for sla management of a digital twin virtual network service, in: IEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), IEEE, 2021, pp. 1–2.
[93] Z. Lv, S. Xie, Artificial intelligence in the digital twins: State of the art, challenges, and future research topics, Digital Twin 1 (12) (2022) 12.
[94] A. Sohail, M. A. Cheema, M. E. Ali, A. N. Toosi, H. A. Rakha, Data-driven approaches for road safety: A comprehensive systematic literature review, Safety Science 158 (2023) 105949.
[95] H. H. Hosamo, P. R. Svennevig, K. Svidt, D. Han, H. K. Nielsen, A digital twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics, Energy and Buildings 261 (2022) 111988.
[96] A. E. Onile, R. Machlev, E. Petlenkov, Y. Levron, J. Belikov, Uses of the digital twins concept for energy services, intelligent recommendation systems, and demand side management: A review, Energy Reports 7 (2021) 997–1015.
[97] N. K. Tran, M. A. Babar, J. Boan, Integrating blockchain and internet of things systems: A systematic review on objectives and designs, J. Netw. Comput. Appl. 173 (2021) 102844. doi:10.1016/j.jnca.2020.102844. URL https://doi.org/10.1016/j.jnca.2020.102844
[98] V. Prokhorenko, M. A. Babar, Architectural resilience in cloud, fog and edge systems: A survey, IEEE Access 8 (2020) 28078–28095. doi:10.1109/ACCESS.2020.2971007. URL https://doi.org/10.1109/ACCESS.2020.2971007
[99] Gpt-4, https://openai.com/research/gpt-4, accessed: 2023-05-08.
[100] Labda, https://ai.googleblog.com/2022/01/lamda-towards-safe-grounded-and-high.html, accessed: 2023-05-08.
[101] A. Makris, K. Tserpes, G. Spiliopoulos, D. Zissis, D. Anagnostopoulos, Mongodb vs postgresql: A comparative study on performance aspects, GeoInformatica 25 (2021) 243–268.
[102] H. Shin, K. Lee, H.-Y. Kwon, A comparative experimental study of distributed storage engines for big spatial data processing using geospark, The Journal of Supercomputing (2022) 1–24
.[103] Clip: Connecting text and images, https://openai.com/research/clip, accessed: 2023-05-08. [104] M. Charitonidou, Urban scale digital twins in data-driven society: Challenging digital universalism in urban planning decision-making, International Journal of Architectural Computing 20 (2) (2022) 238–253. doi:10.1177/ 14780771211070005.
[105] L. Raes, P. Michiels, T. Adolphi, C. Tampere, A. Dalianis, S. McAleer, P. Kogut, Duet: A framework for building interoperable and trusted digital twins of smart cities, IEEE Internet Computing 26 (3) (2022) 43–50. doi:10.1109/MIC. 2021.3060962.
[106] T. Hashem, L. Kulik, Safeguarding location privacy in wireless ad-hoc networks, in: UbiComp, 2007, pp. 372–390. doi:10.1007/978-3-540-74853-3_22.
[107] M. F. Mokbel, C. Chow, W. G. Aref, The new casper: Query processing for location services without compromising privacy, in: VLDB, 2006, pp. 763–774.
[108] T. Liu, H. Li, H. Lu, M. A. Cheema, H. K.-H. Chan, Contact tracing over uncertain indoor positioning data, IEEE Transactions on Knowledge and Data Engineering (2023).
[109] Z. Lv, L. Qiao, Y. Li, Y. Yuan, F. Wang, Blocknet: Beyond reliable spatial digital twins to parallel metaverse, Patterns 3 (5) (2022) 100468.
[110] Z. Pervez, Z. Khan, A. Ghafoor, K. Soomro, SIGNED: smart city digital twin verifiable data framework, IEEE Access 11 (2023) 29430–29446. doi:10.1109/ACCESS.2023.3260621. URL https://doi.org/10.1109/ACCESS.2023.3260621
[111] S. P. Ramu, P. Boopalan, Q.-V. Pham, P. K. R. Maddikunta, T. Huynh-The, M. Alazab, T. T. Nguyen, T. R. Gadekallu, Federated learning enabled digital twins for smart cities: Concepts, recent advances, and future directions, Sustainable Cities and Society 79 (2022) 103663. doi:https://doi.org/10.1016/j.scs.2021.103663.
Authors:
(1) Mohammed Eunus Ali, Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, ECE Building, Dhaka, 1000, Bangladesh;
(2) Muhammad Aamir Cheema, Faculty of Information Technology, Monash University, 20 Exhibition Walk, Clayton, 3164, VIC, Australia;
(3) Tanzima Hashem, Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, ECE Building, Dhaka, 1000, Bangladesh;
(4) Anwaar Ulhaq, School of Computing, Charles Sturt University, Port Macquarie, 2444, NSW, Australia;
(5) Muhammad Ali Babar, School of Computer and Mathematical Sciences, The University of Adelaide, Adelaide, 5005, SA, Australia.