By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
World of SoftwareWorld of SoftwareWorld of Software
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Search
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
Reading: Analyzing the Impact of Pretraining Frequency on Zero-Shot Performance in Multimodal Models | HackerNoon
Share
Sign In
Notification Show More
Font ResizerAa
World of SoftwareWorld of Software
Font ResizerAa
  • Software
  • Mobile
  • Computing
  • Gadget
  • Gaming
  • Videos
Search
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Have an existing account? Sign In
Follow US
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
World of Software > Computing > Analyzing the Impact of Pretraining Frequency on Zero-Shot Performance in Multimodal Models | HackerNoon
Computing

Analyzing the Impact of Pretraining Frequency on Zero-Shot Performance in Multimodal Models | HackerNoon

News Room
Last updated: 2025/07/08 at 9:30 PM
News Room Published 8 July 2025
Share
SHARE

Table of Links

Abstract and 1. Introduction

2 Concepts in Pretraining Data and Quantifying Frequency

3 Comparing Pretraining Frequency & “Zero-Shot” Performance and 3.1 Experimental Setup

3.2 Result: Pretraining Frequency is Predictive of “Zero-Shot” Performance

4 Stress-Testing the Concept Frequency-Performance Scaling Trend and 4.1 Controlling for Similar Samples in Pretraining and Downstream Data

4.2 Testing Generalization to Purely Synthetic Concept and Data Distributions

5 Additional Insights from Pretraining Concept Frequencies

6 Testing the Tail: Let It Wag!

7 Related Work

8 Conclusions and Open Problems, Acknowledgements, and References

Part I

Appendix

A. Concept Frequency is Predictive of Performance Across Prompting Strategies

B. Concept Frequency is Predictive of Performance Across Retrieval Metrics

C. Concept Frequency is Predictive of Performance for T2I Models

D. Concept Frequency is Predictive of Performance across Concepts only from Image and Text Domains

E. Experimental Details

F. Why and How Do We Use RAM++?

G. Details about Misalignment Degree Results

H. T2I Models: Evaluation

I. Classification Results: Let It Wag!

3 Comparing Pretraining Frequency & “Zero-Shot” Performance

Having obtained frequency estimates for our downstream concepts, we now establish the relationship between image-text matched pretraining concept frequencies and zero-shot performance across classification, retrieval, and generation tasks. We first detail our experimental approach and then discuss key results.

3.1 Experimental Setup

We analyze two classes of multimodal models: Image-Text and Text-to-Image. For both, we detail the pretraining and testing datasets, along with their associated evaluation parameters.

3.1.1 Image-Text (CLIP) Models

Datasets. Our evaluation consists of 4 pretraining datasets, 2 downstream retrieval datasets, and 17 downstream classification datasets, presented in Tab. 1, covering a broad spectrum of objects, scenes, and fine-grained distinctions.

Models. We test CLIP [91] models with both ResNet [53] and Vision Transformer [36] architecture, with ViT-B-16 [81] and RN50 [48, 82] trained on CC-3M and CC-12M, ViT-B-16, RN50, and RN101 [61] trained on YFCC-15M, and ViT-B-16, ViT-B-32, and ViT-L-14 trained on LAION400M [102]. We follow open clip [61], slip [81] and cyclip [48] for all implementation details.

Prompting. For zero-shot classification, we experiment with three prompting strategies: {classname} only, “A photo of a {classname}” and prompt-ensembles [91], which averages over 80 different prompt variations of {classname}. For retrieval, we use the image or the caption as input corresponding to I2T (image-to-text) or T2I (text-to-image) retrieval respectively.

Metrics. We compute mean zero-shot classification accuracy for classification tasks [91]. For retrieval, we assess performance using traditional metrics for both text-to-image and image-to-text retrieval tasks [91] (Recall@1, Recall@5, Recall@10).

3.1.2 Text-to-Image Models

Datasets. Our pretraining dataset is LAION-Aesthetics [103], with downstream evaluations done on subsampled versions of eight datasets as released by HEIM [71]: CUB200 [121], Daily-DALLE [33],

Table 2: Models used in text-to-image (T2I) experiments.Table 2: Models used in text-to-image (T2I) experiments.

Figure 2: Log-linear relationships between concept frequency and CLIP zero-shot performance. Across all tested architectures (RN50, RN101, ViT-B-32, ViT-B-16, ViT-L-14) and pretraining datasets (CC-3M, CC-12M, YFCC-15M, LAION-400M), we observe a consistent linear relationship between CLIP’s zero-shot performance on a concept and the log-scaled concept pretraining frequency. This trend holds for both zero-shot classification (results averaged across 17 datasets) and image-text retrieval (results averaged across 2 datasets). ** indicates that the result is significant (p < 0.05 with a two-tailed t-test.), and thus we show pearson correlation (ρ) as well.Figure 2: Log-linear relationships between concept frequency and CLIP zero-shot performance. Across all tested architectures (RN50, RN101, ViT-B-32, ViT-B-16, ViT-L-14) and pretraining datasets (CC-3M, CC-12M, YFCC-15M, LAION-400M), we observe a consistent linear relationship between CLIP’s zero-shot performance on a concept and the log-scaled concept pretraining frequency. This trend holds for both zero-shot classification (results averaged across 17 datasets) and image-text retrieval (results averaged across 2 datasets). ** indicates that the result is significant (p < 0.05 with a two-tailed t-test.), and thus we show pearson correlation (ρ) as well.

Detection [30], Parti-Prompts [130], DrawBench [98], COCO-Base [73], Relational Understanding [32] and Winoground [114]. Please refer to HEIM [71] for more details on the evaluation datasets used.

Models. We evaluate 24 T2I models, detailed in Tab. 2. Their sizes range from 0.4B parameters (DeepFloyd-IF-M [9] and DALL·E Mini [34]) to 4.3B parameters (DeepFloyd-IF-XL [9]). We include various Stable Diffusion models [96] as well as variants tuned for specific visual styles [6, 4, 5].

Prompting. Text prompts from the evaluation datasets are used directly to generate images, with 4 image samples generated for each prompt.

Metrics. Evaluation consists of image-text alignment and aesthetic scores. For automated metrics [71], we use expected and max CLIP-score [57] to measure image-text alignment along with expected and max aesthetics-score [102] to measure aesthetics. To verify reliability of the automated metrics, we compare them with human-rated scores (measured on a 5-point grading scale) for both image-text alignment and aesthetics [71]. To supplement the human-rated scores provided by HEIM [71], we confirm our findings by performing a small-scale human evaluation as well (see Appx. C).

Figure 3: Log-linear relationships between concept frequency and T2I aesthetic scores. Across all tested T2I models pretrained on the LAION-Aesthetics dataset, we observe a consistent linear relationship between zero-shot performance on a concept and the log-scaled concept pretraining frequency.Figure 3: Log-linear relationships between concept frequency and T2I aesthetic scores. Across all tested T2I models pretrained on the LAION-Aesthetics dataset, we observe a consistent linear relationship between zero-shot performance on a concept and the log-scaled concept pretraining frequency.

3.2 Result: Pretraining Frequency is Predictive of “Zero-Shot” Performance

We now probe the impact of concept frequency in pretraining datasets on the zero-shot performance of image-text models. We utilize the matched image-text concept frequencies for estimating frequency of concepts during pretraining. Our findings, illustrated comprehensively in Figs. 2 and 3, demonstrate the effect concept frequency has on model performance across various tasks and model types.

Understanding the Plots. The plots in the main paper present text-image (CLIP) models’ zero-shot classification results using accuracy and text-to-image retrieval performance using Recall@10. Similarly, we present T2I generative models’ performance on image generation tasks using the expected aesthetics score. For the other aforementioned metrics for retrieval as well as other automated generation metrics along with human-rated scores, we find that they show similar trends, and we provide them for reference in Apps. B and C. For clarity, the data presentation is simplified from scatter plots to a cohesive line similar to work from Kandpal et al. [62] and Razeghi et al. [94]. The x-axis is log-scaled, and performance metrics are averaged within bins along this axis for ease-of-visualization of the log-linear correlation. We removed bins containing very few concepts per bin by standard IQR removal [122] following Kandpal et al. [62]. We additionally compute the pearson correlation ρ for each line and provide significance results based on a two-tailed t-test [110].

Key Finding: Log-linear scaling between concept frequency and zero-shot performance. Across all 16 plots, we observe a clear log-linear relationship between concept frequency and zero-shot performance. Note that these plots vary in (i) discriminative vs. generative model types, (ii) classification vs. retrieval tasks, (iii) model architecture and parameter scales, (iv) pretraining datasets with different curation methods and scales, (v) different evaluation metrics, (vi) different prompting strategies for zero-shot classification, and (vii) concept frequencies isolated only from image or text domains (additional experiments which show variation along (v) are presented in Apps. B and C, across (vi) are presented in Appx. A, and across (vii) are presented in Appx. D). The observed log-linear scaling trend persists across all seven presented dimensions. Thus, our results clearly reveal data hungry learning, i.e, a lack in current multimodal models’ ability to learn concepts from pretraining datasets in a sample-efficient manner.

Figure 4: Stress-testing the log-linear scaling trends. We provide further evidence that the log-linear relationship between performance and concept frequency holds across different scenarios: (left) we control for the effect of “similarity” between the downstream test sets and pretraining datasets, and (right) we conduct experiments on an entirely synthetic pretraining distribution with no real-world text-captions or images.Figure 4: Stress-testing the log-linear scaling trends. We provide further evidence that the log-linear relationship between performance and concept frequency holds across different scenarios: (left) we control for the effect of “similarity” between the downstream test sets and pretraining datasets, and (right) we conduct experiments on an entirely synthetic pretraining distribution with no real-world text-captions or images.

Authors:

(1) Vishaal Udandarao, Tubingen AI Center, University of Tubingen, University of Cambridge, and equal contribution;

(2) Ameya Prabhu, Tubingen AI Center, University of Tubingen, University of Oxford, and equal contribution;

(3) Adhiraj Ghosh, Tubingen AI Center, University of Tubingen;

(4) Yash Sharma, Tubingen AI Center, University of Tubingen;

(5) Philip H.S. Torr, University of Oxford;

(6) Adel Bibi, University of Oxford;

(7) Samuel Albanie, University of Cambridge and equal advising, order decided by a coin flip;

(8) Matthias Bethge, Tubingen AI Center, University of Tubingen and equal advising, order decided by a coin flip.


Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Share This Article
Facebook Twitter Email Print
Share
What do you think?
Love0
Sad0
Happy0
Sleepy0
Angry0
Dead0
Wink0
Previous Article UK among worst performers in Europe for fundamental 5G metrics | Computer Weekly
Next Article Here Are My Picks For Prime Day’s Best Laptop Deals From Apple, Lenovo, and More
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

248.1k Like
69.1k Follow
134k Pin
54.3k Follow

Latest News

Claude AI for Education just got a few huge upgrades
News
What Codata, Control Flow, and Logic Teach Us About Programming | HackerNoon
Computing
Everything Samsung Announced at Its Summer Galaxy Unpacked Event
Gadget
Linda Yaccarino stepping down as X CEO
News

You Might also Like

Computing

What Codata, Control Flow, and Logic Teach Us About Programming | HackerNoon

9 Min Read
Computing

DoNot APT Expands Operations, Targets European Foreign Ministries with LoptikMod Malware

4 Min Read
Computing

Red Hat Announces No-Cost RHEL For Business Developers

1 Min Read
Computing

China’s BYD aims to sell 100,000 EVs in Mexico next year · TechNode

1 Min Read
//

World of Software is your one-stop website for the latest tech news and updates, follow us now to get the news that matters to you.

Quick Link

  • Privacy Policy
  • Terms of use
  • Advertise
  • Contact

Topics

  • Computing
  • Software
  • Press Release
  • Trending

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

World of SoftwareWorld of Software
Follow US
Copyright © All Rights Reserved. World of Software.
Welcome Back!

Sign in to your account

Lost your password?