By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
World of SoftwareWorld of SoftwareWorld of Software
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Search
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
Reading: Unleashing LLM Speed: Multi-Token Self-Speculative Decoding Redefines Inference | HackerNoon
Share
Sign In
Notification Show More
Font ResizerAa
World of SoftwareWorld of Software
Font ResizerAa
  • Software
  • Mobile
  • Computing
  • Gadget
  • Gaming
  • Videos
Search
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Have an existing account? Sign In
Follow US
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
World of Software > Computing > Unleashing LLM Speed: Multi-Token Self-Speculative Decoding Redefines Inference | HackerNoon
Computing

Unleashing LLM Speed: Multi-Token Self-Speculative Decoding Redefines Inference | HackerNoon

News Room
Last updated: 2025/07/20 at 1:10 PM
News Room Published 20 July 2025
Share
SHARE

Table of Links

Abstract and 1. Introduction

2. Method

3. Experiments on real data

4. Ablations on synthetic data

5. Why does it work? Some speculation

6. Related work

7. Conclusion, Impact statement, Environmental impact, Acknowledgements and References

A. Additional results on self-speculative decoding

B. Alternative architectures

C. Training speeds

D. Finetuning

E. Additional results on model scaling behavior

F. Details on CodeContests finetuning

G. Additional results on natural language benchmarks

H. Additional results on abstractive text summarization

I. Additional results on mathematical reasoning in natural language

J. Additional results on induction learning

K. Additional results on algorithmic reasoning

L. Additional intuitions on multi-token prediction

M. Training hyperparameters

A. Additional results on self-speculative decoding

Table S2: Relative speedups with self-speculative decoding. For wikipedia and books we prompt a 7B parameter model trained on 500B tokens, and for code we prompt a 7B parameter model trained on 1T tokens of code on 4200 sequences of 512 tokens from a test dataset not seen during training, and generate completions consisting of 512 tokens using greedy self-speculative decoding (Stern et al., 2018) using the indicated number of heads from a 4-token prediction model. Note that the maximal speedup that can be obtained with self-speculative decoding using k heads is k. The last column shows the average number of tokens retrieved from a forward containing this sequence (both verification and prediction). The speedup was evaluated at the maximal batch size of 42, but is constant across batch sizes (Figure S10).

Table S3: Relative speedups with self-speculative decoding with byte-level models on code. We prompt the 7B parameter models from Section 3.3 on 4096 sequences of 1024 bytes of code not seen during training, and generate completions consisting of 1024 bytes using greedy self-speculative decoding (Stern et al., 2018) as in Table S2. The speedup was evaluated at a batch size of 16.

:::info
Authors:

(1) Fabian Gloeckle, FAIR at Meta, CERMICS Ecole des Ponts ParisTech and Equal contribution;

(2) Badr Youbi Idrissi, FAIR at Meta, LISN Université Paris-Saclayand and Equal contribution;

(3) Baptiste Rozière, FAIR at Meta;

(4) David Lopez-Paz, FAIR at Meta and a last author;

(5) Gabriel Synnaeve, FAIR at Meta and a last author.

:::


:::info
This paper is available on arxiv under CC BY 4.0 DEED license.

:::

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Share This Article
Facebook Twitter Email Print
Share
What do you think?
Love0
Sad0
Happy0
Sleepy0
Angry0
Dead0
Wink0
Previous Article EcoFlow Introduces New Home Battery to Aid in Disaster Preparedness
Next Article Why Cartken pivoted its focus from last-mile delivery to industrial robots | News
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

248.1k Like
69.1k Follow
134k Pin
54.3k Follow

Latest News

Dog the Bounty Hunter’s grandson, 13, shot and killed by his own dad
News
Amazon slashes Apple’s 16-inch MacBook Pro to $2,209
News
Today's NYT Mini Crossword Answers for July 21 – CNET
News
Best Deals on iPhone 16, 16e, and 16 Pro in 2025
Mobile

You Might also Like

Computing

The HackerNoon Newsletter: Why Teams Are Ditching DynamoDB (7/20/2025) | HackerNoon

3 Min Read
Computing

Exploring Alternative Architectures for Multi-Token LLM Prediction | HackerNoon

2 Min Read
Computing

Linux 6.16-rc7 Released: “I Think We’re In Good Shape”

3 Min Read
Computing

Free Action Plan Templates to Organize Goals and Track Progress

34 Min Read
//

World of Software is your one-stop website for the latest tech news and updates, follow us now to get the news that matters to you.

Quick Link

  • Privacy Policy
  • Terms of use
  • Advertise
  • Contact

Topics

  • Computing
  • Software
  • Press Release
  • Trending

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

World of SoftwareWorld of Software
Follow US
Copyright © All Rights Reserved. World of Software.
Welcome Back!

Sign in to your account

Lost your password?