By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
World of SoftwareWorld of SoftwareWorld of Software
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Search
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
Reading: Efforts to Ground Physics in Math Are Opening the Secrets of Time
Share
Sign In
Notification Show More
Font ResizerAa
World of SoftwareWorld of Software
Font ResizerAa
  • Software
  • Mobile
  • Computing
  • Gadget
  • Gaming
  • Videos
Search
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Have an existing account? Sign In
Follow US
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
World of Software > Gadget > Efforts to Ground Physics in Math Are Opening the Secrets of Time
Gadget

Efforts to Ground Physics in Math Are Opening the Secrets of Time

News Room
Last updated: 2025/08/03 at 7:22 AM
News Room Published 3 August 2025
Share
SHARE

Now, three mathematicians have finally provided such a result. Their work not only represents a major advance in Hilbert’s program, but also taps into questions about the irreversible nature of time.

“It’s a beautiful work,” said Gregory Falkovich, a physicist at the Weizmann Institute of Science. “A tour de force.”

Under the Mesoscope

Consider a gas whose particles are very spread out. There are many ways a physicist might model it.

At a microscopic level, the gas is composed of individual molecules that act like billiard balls, moving through space according to Isaac Newton’s 350-year-old laws of motion. This model of the gas’s behavior is called the hard-sphere particle system.

Now zoom out a bit. At this new “mesoscopic” scale, your field of vision encompasses too many molecules to individually track. Instead, you’ll model the gas using an equation that the physicists James Clerk Maxwell and Ludwig Boltzmann developed in the late 19th century. Called the Boltzmann equation, it describes the likely behavior of the gas’s molecules, telling you how many particles you can expect to find at different locations moving at different speeds. This model of the gas lets physicists study how air moves at small scales—for instance, how it might flow around a space shuttle.

“What mathematicians do to physicists is they wake us up.”

Gregory Falkovich

Zoom out again, and you can no longer tell that the gas is made up of individual particles. It acts like one continuous substance. To model this macroscopic behavior—how dense the gas is and how fast it’s moving at any point in space—you’ll need yet another set of equations, called the Navier-Stokes equations.

Physicists view these three different models of the gas’s behavior as compatible; they’re simply different lenses for understanding the same thing. But mathematicians hoping to contribute to Hilbert’s sixth problem wanted to prove that rigorously. They needed to show that Newton’s model of individual particles gives rise to Boltzmann’s statistical description, and that Boltzmann’s equation in turn gives rise to the Navier-Stokes equations.

Mathematicians have had some success with the second step, proving that it’s possible to derive a macroscopic model of a gas from a mesoscopic one in various settings. But they couldn’t resolve the first step, leaving the chain of logic incomplete.

Now that’s changed. In a series of papers, the mathematicians Yu Deng, Zaher Hani, and Xiao Ma proved the harder microscopic-to-mesoscopic step for a gas in one of these settings, completing the chain for the first time. The result and the techniques that made it possible are “paradigm-shifting,” said Yan Guo of Brown University.

Yu Deng usually studies the behavior of systems of waves. But by applying his expertise to the realm of particles, he has now resolved a major open problem in mathematical physics.

Photograph: Courtesy of Yu Deng

Declaration of Independence

Boltzmann could already show that Newton’s laws of motion give rise to his mesoscopic equation, so long as one crucial assumption holds true: that the particles in the gas move more or less independently of each other. That is, it must be very rare for a particular pair of molecules to collide with each other multiple times.

But Boltzmann could not definitively demonstrate that this assumption was true. “What he could not do, of course, is prove theorems about this,” said Sergio Simonella of Sapienza University in Rome. “There was no structure, there were no tools at the time.”

The physicist Ludwig Boltzmann studied the statistical properties of fluids.

ullstein bild Dtl./Getty Images

After all, there are infinitely many ways a collection of particles might collide and recollide. “You just get this huge explosion of possible directions that they can go,” Levermore said—making it a “nightmare” to actually prove that scenarios involving many recollisions are as rare as Boltzmann needed them to be.

In 1975, a mathematician named Oscar Lanford managed to prove this, but only for extremely short time periods. (The exact amount of time depends on the initial state of the gas, but it’s less than the blink of an eye, according to Simonella.) Then the proof broke down; before most of the particles got the chance to collide even once, Lanford could no longer guarantee that recollisions would remain a rare occurrence.

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Share This Article
Facebook Twitter Email Print
Share
What do you think?
Love0
Sad0
Happy0
Sleepy0
Angry0
Dead0
Wink0
Previous Article MS Authenticator users face passkey crunch time | Computer Weekly
Next Article This Password Manager Caught Some of Its Own Employees Not Using Its Product
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

248.1k Like
69.1k Follow
134k Pin
54.3k Follow

Latest News

Apple lands its biggest movie yet — but is it enough to save Apple TV+?
News
These Are the Photoshop AI Tools Worth Using: How I Use AI to Edit My Photos
News
Intel QuickAssist Hit By Second Demotion In Linux 6.17 Due To Lack Of Kernel Benefit
Computing
International Payments Made Easy: Send Money Globally in Minutes
Gadget

You Might also Like

Gadget

International Payments Made Easy: Send Money Globally in Minutes

4 Min Read
Gadget

Best tablets in 2025 for all budgets | Stuff

20 Min Read
Gadget

Canyon’s bike customisation programme makes me want to sell my car | Stuff

2 Min Read
Gadget

The Nintendo Switch 2’s Biggest Problem Is Already Storage

4 Min Read
//

World of Software is your one-stop website for the latest tech news and updates, follow us now to get the news that matters to you.

Quick Link

  • Privacy Policy
  • Terms of use
  • Advertise
  • Contact

Topics

  • Computing
  • Software
  • Press Release
  • Trending

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

World of SoftwareWorld of Software
Follow US
Copyright © All Rights Reserved. World of Software.
Welcome Back!

Sign in to your account

Lost your password?