By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
World of SoftwareWorld of SoftwareWorld of Software
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Search
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
Reading: SST vs LoRA: A Leaner, Smarter Way to Train AI Models | HackerNoon
Share
Sign In
Notification Show More
Font ResizerAa
World of SoftwareWorld of Software
Font ResizerAa
  • Software
  • Mobile
  • Computing
  • Gadget
  • Gaming
  • Videos
Search
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Have an existing account? Sign In
Follow US
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
World of Software > Computing > SST vs LoRA: A Leaner, Smarter Way to Train AI Models | HackerNoon
Computing

SST vs LoRA: A Leaner, Smarter Way to Train AI Models | HackerNoon

News Room
Last updated: 2025/10/30 at 8:05 AM
News Room Published 30 October 2025
Share
SHARE

Table of Links

Abstract and 1. Introduction

  1. Related Work

  2. Low Rank Adaptation

    3.1 LoRA and 3.2 Limitation of LoRA

    3.3 ReLoRA*

  3. Sparse Spectral Training

    4.1 Preliminaries and 4.2 Gradient Update of U, VT with Σ

    4.3 Why SVD Initialization is Important

    4.4 SST Balances Exploitation and Exploration

    4.5 Memory-Efficient Implementation for SST and 4.6 Sparsity of SST

  4. Experiments

    5.1 Machine Translation

    5.2 Natural Language Generation

    5.3 Hyperbolic Graph Neural Networks

  5. Conclusion and Discussion

  6. Broader Impacts and References

Supplementary Information

A. Algorithm of Sparse Spectral Training

B. Proof of Gradient of Sparse Spectral Layer

C. Proof of Decomposition of Gradient of Weight

D. Proof of Advantage of Enhanced Gradient over Default Gradient

E. Proof of Zero Distortion with SVD Initialization

F. Experiment Details

G. Singular Value Pruning

H. Evaluating SST and GaLore: Complementary Approaches to Memory Efficiency

I. Ablation Study

5.2 Natural Language Generation

We utilize the OPT [9] architecture as the baseline for our language generation experiments. All models are pre-trained on OpenWebText [39], an open-source reproduction of OpenAI’s WebText. To facilitate fair comparisons across different OPT model sizes, we standardize the total training tokens for all models at 19.7 billion. A consistent rank (r = 64) is applied for all low-rank methods.

Table 3 displays the validation perplexity results on the OpenWebText dataset across different sizes of OPT models. The results indicate that SST not only achieves lower perplexity scores compared to LoRA and ReLoRA* but also approximates the performance of full-rank training, with significantly fewer trainable parameters.

Figure 2 illustrates a comparison of effective steps among various training methods. The effective step metric, which considers both the number of trainable parameters and the number of training steps, demonstrates that SST offers a more efficient training approach compared to the full-rank method.

Each pretrained model undergoes zero-shot evaluations on all 16 NLP tasks used in OPT article [9], including ARC Easy and Challenge [40], HellaSwag [41], OpenBookQA [42], PIQA [43], StoryCloze [44], SuperGLUE [45], WinoGrad [46], and WinoGrande [47]. Evaluations are conducted using the LM Evaluation Harness framework [48]. Except for the ReCoRD task, which uses F1 score, all other tasks are evaluated using accuracy.

Table 4 details the zero-shot evaluation results across the 16 NLP tasks. SST consistently performs comparably or better than other low-rank methods and shows competitive performance against the full-rank models.

We further conduct an analysis experiment on inference by doing post-training singular value pruning on SST model (see appendix G).

5.3 Hyperbolic Graph Neural Networks

Hyperbolic Graph Neural Networks (HGNNs) [11, 12] capitalize on the expansive and hierarchical nature of hyperbolic space to efficiently manage and analyze graph-structured data. This geometric space is particularly suitable for graphs due to its ability to closely mimic the underlying data structures with minimal distortion, offering a substantial improvement over traditional Euclidean methods.

Table 3: Validation perplexity on OpenWebText across various OPT model sizesalong with the number of trainable parameters of each method. Rank r = 64. Values in bold highlight the highest performance among the low-rank methods.

We evaluated the effectiveness of SST on HyboNet [12] version HGNN in node classification and link prediction across four distinct datasets: Airport [11], Cora [49], Disease [50], and PubMed [51]. Each experiment was conducted with three random seeds.

Table 4: Zero-shot evaluations on the same 16 NLP tasks featured in the OPT article [9]. Except for the ReCoRD task, which uses F1 score, all other tasks are evaluated using accuracy, with values presented as percentages. Mean scores in bold represent superior performance among the low-rank methods. Additionally, we include the win percentage (counting ties) for each low-rank method compared to the full-rank training.

Table 5: Node Classification and Link Prediction Results. Model’s dimension d = 16. Results are reported as test F1 scores for node classification and test precision for link prediction, expressed in percentages. Values highlighted in bold represent the highest performance among the low-rank methods, while those marked with an “*” denote performance that exceeds that of the full-rank variants.

The results, detailed in Table 5, demonstrate strong performance in both node classification and link prediction tasks. SST not only shows comparable performance to full-rank training (exceeding it in the Disease link prediction task) but also significantly outperforms LoRA at equivalent ranks. Notably, SST’s advantage over LoRA is larger on r = 1 than r = 2, likely due to SST’s sampling strategy being particularly effective in sparser scenarios.

:::info
Authors:

(1) Jialin Zhao, Center for Complex Network Intelligence (CCNI), Tsinghua Laboratory of Brain and Intelligence (THBI) and Department of Computer Science;

(2) Yingtao Zhang, Center for Complex Network Intelligence (CCNI), Tsinghua Laboratory of Brain and Intelligence (THBI) and Department of Computer Science;

(3) Xinghang Li, Department of Computer Science;

(4) Huaping Liu, Department of Computer Science;

(5) Carlo Vittorio Cannistraci, Center for Complex Network Intelligence (CCNI), Tsinghua Laboratory of Brain and Intelligence (THBI), Department of Computer Science, and Department of Biomedical Engineering Tsinghua University, Beijing, China.

:::


:::info
This paper is available on arxiv under CC by 4.0 Deed (Attribution 4.0 International) license.

:::

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Share This Article
Facebook Twitter Email Print
Share
What do you think?
Love0
Sad0
Happy0
Sleepy0
Angry0
Dead0
Wink0
Previous Article Listen to This Deal: These JLab Earbuds Can Be Yours for Under $20
Next Article Synthesia valued at $4bn after new funding round, reports say – UKTN
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

248.1k Like
69.1k Follow
134k Pin
54.3k Follow

Latest News

How Tanzania internet blackout halted Nala payments for 18 hours
Computing
Tech Giants Report Another Quarter of Explosive AI Growth
News
Every Tesla Cybertruck Recall Since the Vehicle Was Released
News
Rode Wireless Micro Camera Kit includes an OLED receiver and supports digital cameras | Stuff
Gadget

You Might also Like

Computing

How Tanzania internet blackout halted Nala payments for 18 hours

4 Min Read
Computing

Accelerating Vector Graphics with Euler Spirals | HackerNoon

7 Min Read
Computing

Qt Creator 18 Released With Experimental Support For Development Containers

1 Min Read
Computing

Huawei ramps up Mate 70 series production for November launch: report · TechNode

1 Min Read
//

World of Software is your one-stop website for the latest tech news and updates, follow us now to get the news that matters to you.

Quick Link

  • Privacy Policy
  • Terms of use
  • Advertise
  • Contact

Topics

  • Computing
  • Software
  • Press Release
  • Trending

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

World of SoftwareWorld of Software
Follow US
Copyright © All Rights Reserved. World of Software.
Welcome Back!

Sign in to your account

Lost your password?