By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
World of SoftwareWorld of SoftwareWorld of Software
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Search
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
Reading: Crawl, Walk, Run, Fly – The Four Phases of AI Agent Maturity | HackerNoon
Share
Sign In
Notification Show More
Font ResizerAa
World of SoftwareWorld of Software
Font ResizerAa
  • Software
  • Mobile
  • Computing
  • Gadget
  • Gaming
  • Videos
Search
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Have an existing account? Sign In
Follow US
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
World of Software > Computing > Crawl, Walk, Run, Fly – The Four Phases of AI Agent Maturity | HackerNoon
Computing

Crawl, Walk, Run, Fly – The Four Phases of AI Agent Maturity | HackerNoon

News Room
Last updated: 2025/12/16 at 5:25 PM
News Room Published 16 December 2025
Share
Crawl, Walk, Run, Fly – The Four Phases of AI Agent Maturity | HackerNoon
SHARE

:::info
This is the second article in a five-part series on agentic AI in the enterprise. In Part 1, we explored what agentic AI is and how it differs from generative AI, highlighting the shift from hype to pragmatic reality. Here in Part 2, we focus on how organisations progress towards autonomy through distinct maturity phases, and why taking it step by step matters.

:::

Deploying autonomous agents isn’t an overnight revolution. It’s a journey of increasing capability and trust. In practice, enterprise adoption of AI agents can be viewed as a maturity spectrum with four broad phases, progressing from basic assistive tools to fully autonomous systems. Think of it as crawl – walk – run – fly in terms of an organisation’s AI capability. Understanding where you are on this curve helps set realistic expectations and next steps for your AI projects. Most enterprises today are somewhere in the middle, experimenting with advanced assistants or narrow autonomous agents, rather than at the finish line of “AI doing everything.” Let’s define each phase and what it looks like in real life. (We’ll use the crawl/walk/run/fly metaphor to make it memorable).

Phase 1 – Assisted Intelligence (Crawl): At the base of the ladder are the traditional automation and analytics solutions that have been around for years. Think rule-based workflows, simple chatbots, robotic process automation (RPA) bots, or classical machine learning models that make isolated predictions. These systems can automate repetitive, well-defined tasks (for example, flagging a fraudulent transaction or generating a report from a template) and assist humans by handling grunt work. However, they have no dynamic planning or true autonomy – they execute predetermined rules or model outputs in a fixed way. Most enterprises already have this foundation in place (perhaps a basic customer service chatbot or an ML classifier sorting incoming emails). The impact is real (e.g. efficiency gains for narrow tasks) but it’s limited by the lack of adaptability or initiative. In short, Phase 1 is like having a scripted assistant that only does exactly what it’s pre-programmed to do, nothing more.

Phase 2 – Generative AI Assistants (Walk): The last couple of years have seen an explosion of generative AI-powered assistants that operate with far more flexibility. This is the era of tools like Microsoft’s Copilot in Office apps, Google’s Duet AI for Workspace, or custom GPT-based chatbots that can understand natural language and handle more complex requests. These assistants represent a big step up in capability – for instance, they can summarise documents, draft emails, answer free-form questions – providing a significant productivity boost across many knowledge-work tasks. However, these assistants are still mostly reactive. They work one query or command at a time and rely on the user to initiate each interaction. In other words, they’re assistive tools that enhance human work, not autonomous agents that can initiate or chain together tasks independently. Phase 2 is where many companies’ AI efforts blossomed during the generative AI boom: lots of proof-of-concepts with chatbots and helpers that can respond intelligently, but don’t truly act on their own. It’s like having a very smart colleague on call, but one who only speaks when spoken to.

Phase 3 – Goal-Driven AI Agents (Run): Here we reach true agentic AI. Systems in Phase 3 can be given a high-level goal and will proactively devise and execute a multi-step plan to achieve it. They incorporate capabilities like planning algorithms, tool use (e.g. calling APIs), memory of prior context, and dynamic learning from feedback. In practice, these are “digital colleagues” that can handle well-bounded objectives end-to-end. For example, an IT support agent at this level might autonomously handle a user’s request from start to finish: read the ticket, diagnose the issue (maybe by querying logs or a knowledge base), apply a fix, and then confirm resolution, escalating to a human only if it hits an unknown problem. In 2025, many enterprise pilots are hovering in this Phase 3 category: agents that can do non-trivial tasks (data analysis, marketing campaign optimisation, incident response, etc.) with minimal intervention. This is a major leap in capability – moving from one-step answers to multi-step autonomous execution – but it also brings major complexity. To work reliably, it demands a robust architecture and strong guardrails (those “Seven Pillars” we’ll discuss in Part 3). Most successful “agentic AI” stories today fall into this Phase 3 zone, often with a human-in-the-loop for oversight or final approval on important actions. In other words, the agent is running, but with a safety harness attached.

Phase 4 – Fully Autonomous Agentic Systems (Fly): The aspirational end-state is a system (or an ecosystem of systems) of AI agents that operate with minimal human involvement – effectively functioning as a digital workforce for certain tasks or processes. A Phase 4 scenario might be, say, an autonomous order-fulfilment agent (or a team of agents) that receives customer orders and then handles everything from inventory checks to arranging shipment and updating the customer, adapting to issues along the way, all without hand-holding. In theory, you could delegate an entire business process to AI agents. In practice, very few organisations have anything close to this in production yet. The technical, ethical, and organisational challenges are significant, and understandably, most companies aren’t ready to let an AI roam free in critical operations. Fully autonomous systems raise hard questions of control, liability, and trust that are still being figured out. For now, Phase 4 remains largely in the realm of experiments and conceptual pilots. It’s a compelling vision of the future (like “flying”) but most enterprises will get there (if ever) only after mastering the earlier phases and proving value step by step.

Where do companies stand today? In my experience (echoed by industry surveys), most companies right now cluster in Phases 2-3 – they’re using generative AI assistants to augment staff, and maybe running a pilot of a more autonomous agent in a specific use case. It’s common to start by deploying a GenAI assistant to help employees (Phase 2), then pilot a goal-driven agent for one high-value process (Phase 3). Each step up the maturity curve requires not just better tech, but stronger processes and cultural readiness. Not every organisation will need or want to reach Phase 4 in all areas – the aim isn’t autonomy for its own sake, but improved outcomes. In many cases, a Phase 3 agent with a human overseer delivers the best balance of efficiency and risk management. The maturity model is a guide to help you decide where to apply agentic AI next and how to chart a safe path forward.

Crucially, knowing your current phase helps manage expectations. For example, if your firm is still “learning to crawl” with basic RPA bots, jumping straight to a fully autonomous agent managing critical tasks would be asking for trouble. It might be wiser to introduce a generative assistant first, get comfortable with AI outputs, then gradually give the AI more autonomy in a controlled area. Conversely, if you’ve done successful Phase 2 pilots, you might be ready to experiment with a Phase 3 agent – but you’ll need to invest in the architecture and governance to support it. The message is: walk before you run (and certainly before you fly).

In the next part of this series, we’ll move from this conceptual roadmap to the architecture needed for success. What does it take under the hood to turn a nifty prototype agent into a production-grade solution? As it turns out, successful agentic AI systems share a common DNA. In Part 3, we’ll break down the seven key pillars of an enterprise AI agent’s architecture, from how it perceives input to how it is governed, and share design tips for each.

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Share This Article
Facebook Twitter Email Print
Share
What do you think?
Love0
Sad0
Happy0
Sleepy0
Angry0
Dead0
Wink0
Previous Article Best portable speaker deal: Get  off the Anker Soundcore Boom 2 at Amazon Best portable speaker deal: Get $50 off the Anker Soundcore Boom 2 at Amazon
Next Article The Best eSIMs We’ve Tested for 2026 The Best eSIMs We’ve Tested for 2026
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

248.1k Like
69.1k Follow
134k Pin
54.3k Follow

Latest News

You Can Watch an Exclusive Avatar: Fire and Ash Scene on TikTok Right Now
You Can Watch an Exclusive Avatar: Fire and Ash Scene on TikTok Right Now
News
3 Ways Smart Leaders Can Adopt AI Without Sacrificing Trust | HackerNoon
3 Ways Smart Leaders Can Adopt AI Without Sacrificing Trust | HackerNoon
Computing
Abra launches in-flight connectivity through SES multi-orbit craft | Computer Weekly
Abra launches in-flight connectivity through SES multi-orbit craft | Computer Weekly
News
OnePlus 15R, 15R Ace Edition Launching In India Today: Expected Price And Specs
OnePlus 15R, 15R Ace Edition Launching In India Today: Expected Price And Specs
Mobile

You Might also Like

3 Ways Smart Leaders Can Adopt AI Without Sacrificing Trust | HackerNoon
Computing

3 Ways Smart Leaders Can Adopt AI Without Sacrificing Trust | HackerNoon

5 Min Read
Tencent Raises .27 Billion in Offshore Yuan Bonds as AI Spending Slows · TechNode
Computing

Tencent Raises $1.27 Billion in Offshore Yuan Bonds as AI Spending Slows · TechNode

1 Min Read
Before AI Takes Our Jobs, Someone Better Teach It How to Tell Time | HackerNoon
Computing

Before AI Takes Our Jobs, Someone Better Teach It How to Tell Time | HackerNoon

5 Min Read
Prices cut on more than 200 car models in China this year: expert · TechNode
Computing

Prices cut on more than 200 car models in China this year: expert · TechNode

1 Min Read
//

World of Software is your one-stop website for the latest tech news and updates, follow us now to get the news that matters to you.

Quick Link

  • Privacy Policy
  • Terms of use
  • Advertise
  • Contact

Topics

  • Computing
  • Software
  • Press Release
  • Trending

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

World of SoftwareWorld of Software
Follow US
Copyright © All Rights Reserved. World of Software.
Welcome Back!

Sign in to your account

Lost your password?