By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
World of SoftwareWorld of SoftwareWorld of Software
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Search
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
Reading: High-Accuracy Image Retrieval From Brain Scans: MindEye2 Results | HackerNoon
Share
Sign In
Notification Show More
Font ResizerAa
World of SoftwareWorld of Software
Font ResizerAa
  • Software
  • Mobile
  • Computing
  • Gadget
  • Gaming
  • Videos
Search
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Have an existing account? Sign In
Follow US
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
World of Software > Computing > High-Accuracy Image Retrieval From Brain Scans: MindEye2 Results | HackerNoon
Computing

High-Accuracy Image Retrieval From Brain Scans: MindEye2 Results | HackerNoon

News Room
Last updated: 2025/04/11 at 7:55 PM
News Room Published 11 April 2025
Share
SHARE

Table of Links

Abstract and 1 Introduction

2 MindEye2 and 2.1 Shared-Subject Functional Alignment

2.2 Backbone, Diffusion Prior, & Submodules

2.3 Image Captioning and 2.4 Fine-tuning Stable Diffusion XL for unCLIP

2.5 Model Inference

3 Results and 3.1 fMRI-to-Image Reconstruction

3.2 Image Captioning

3.3 Image/Brain Retrieval and 3.4 Brain Correlation

3.5 Ablations

4 Related Work

5 Conclusion

6 Acknowledgements and References

A Appendix

A.1 Author Contributions

A.2 Additional Dataset Information

A.3 MindEye2 (not pretrained) vs. MindEye1

A.4 Reconstruction Evaluations Across Varying Amounts of Training Data

A.5 Single-Subject Evaluations

A.6 UnCLIP Evaluation

A.7 OpenCLIP BigG to CLIP L Conversion

A.8 COCO Retrieval

A.9 Reconstruction Evaluations: Additional Information

A.10 Pretraining with Less Subjects

A.11 UMAP Dimensionality Reduction

A.12 ROI-Optimized Stimuli

A.13 Human Preference Experiments

3.3 Image/Brain Retrieval

Image retrieval metrics help quantify the level of fine-grained image information contained in the fMRI embeddings. There are many images in the test set that contain similar semantic content (e.g., 14 images of zebras), so if the model can identify the exact image corresponding to a given brain sample, that demonstrates such fMRI embeddings contain fine-grained image content. MindEye2 improves upon MindEye1’s retrieval evaluations by reaching near-ceiling performance on the retrieval benchmarks used in previous papers (Lin et al., 2022; Scotti et al., 2023) (Table 1). Further, retrieval performance remained competitive when MindEye2 was trained with only 1 hour of data.

Computing the retrieval metrics in Table 1 involved the following steps. The goal for brain retrieval is to identify the correct sample of brain activity that gave rise to the seen image out of a pool of brain samples. The seen image is converted to an OpenCLIP image embedding (or CLIP image embedding, depending on the contrastive space used in the paper) and cosine similarity is computed between its respective fMRI latent (e.g., from the retrieval submodule) as well as 299 other randomly selected fMRI latents in the test set. For each test sample, success is determined if the cosine similarity is greatest between the ground truth OpenCLIP/CLIP image embedding and its respective fMRI embedding (aka top-1 retrieval performance, chance=1/300). We specifically used 300 random samples because this was the approach used in previous work. We averaged retrieval performance across test samples and repeated the entire process 30 times to account for the variability in random sampling of batches. For image retrieval, the same procedure is used except image and brain samples are flipped such that the goal is to find the corresponding seen image in the image pool from the provided brain sample.

3.4 Brain Correlation

To measure whether a reconstruction is faithful to the original brain activity that evoked it, we examine whether it accurately predicts that brain activity when input to a encoding model pretrained to predict brain activity from images (Gaziv et al., 2022). Encoding models provide a more comprehensive analysis of the proximity between images and brain activity (Naselaris et al., 2011), providing a unique measure of reconstruction quality that is perhaps more informative than the image metrics traditionally used for assessment. This alignment is measured independently of the stimulus image, allowing it to be used to assess reconstruction quality when the ground-truth image is unknown, making it extendable to new data in a variety of domains including covert visual content such as mental images. Given that human judgment is grounded in human brain activity, it could also be the case that brain correlation metrics provide increased alignment with the judgments of human observers. The brain correlation metrics in Table 3 are calculated with the GNet encoding model (St-Yves et al., 2022) using protocol from Kneeland et al. (2023c). “Unrefined” reconstructions performed best, perhaps because refinement sacrifices brain alignment (and reconstruction performance as assessed by some metrics) for the additional boost in perceptual alignment from enforcing a naturalistic prior.

Authors:

(1) Paul S. Scotti, Stability AI and Medical AI Research Center (MedARC);

(2) Mihir Tripathy, Medical AI Research Center (MedARC) and a Core contribution;

(3) Cesar Kadir Torrico Villanueva, Medical AI Research Center (MedARC) and a Core contribution;

(4) Reese Kneeland, University of Minnesota and a Core contribution;

(5) Tong Chen, The University of Sydney and Medical AI Research Center (MedARC);

(6) Ashutosh Narang, Medical AI Research Center (MedARC);

(7) Charan Santhirasegaran, Medical AI Research Center (MedARC);

(8) Jonathan Xu, University of Waterloo and Medical AI Research Center (MedARC);

(9) Thomas Naselaris, University of Minnesota;

(10) Kenneth A. Norman, Princeton Neuroscience Institute;

(11) Tanishq Mathew Abraham, Stability AI and Medical AI Research Center (MedARC).

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Share This Article
Facebook Twitter Email Print
Share
What do you think?
Love0
Sad0
Happy0
Sleepy0
Angry0
Dead0
Wink0
Previous Article AI and Data Centers Could Use as Much Energy as Japan by 2030
Next Article AI surveillance towers place migrants in ‘even greater jeopardy’ | Computer Weekly
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

248.1k Like
69.1k Follow
134k Pin
54.3k Follow

Latest News

Every Amazon Prime member just unlocked £125 worth of freebies today
News
China’s Zeekr and Lynk & Co chase 1 million annual sales target after merger · TechNode
Computing
‘Aggressive’ hackers of UK retailers are now targeting US stores, says Google
News
Humans give off a ghostly glow that vanishes when we die
News

You Might also Like

Computing

China’s Zeekr and Lynk & Co chase 1 million annual sales target after merger · TechNode

2 Min Read
Computing

Kenya’s Craydel enters Rwanda, taps Nigerian talent in Pan-African push

4 Min Read
Computing

Stellantis partner taps Van Gogh’s painting for special edition car · TechNode

1 Min Read
Computing

miHoYo cracks down on game leaks, holds over 200 individuals accountable · TechNode

1 Min Read
//

World of Software is your one-stop website for the latest tech news and updates, follow us now to get the news that matters to you.

Quick Link

  • Privacy Policy
  • Terms of use
  • Advertise
  • Contact

Topics

  • Computing
  • Software
  • Press Release
  • Trending

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

World of SoftwareWorld of Software
Follow US
Copyright © All Rights Reserved. World of Software.
Welcome Back!

Sign in to your account

Lost your password?