Content Overview
- Effects of turning on the new type promotion
- More consistent and predictable promotion type
- Reduced risk of bit-widening
- tf.Tensor mathematical dunder methods
- tf.Variable in-place ops
- tf.constant implicit conversions
- TF-NumPay Array
- Input Type Inference
- WeakTensor-supporting APIs
Below is a non-exhaustive list of changes that result from turning on the new type promotion.
- More consistent and predictable promotion results.
- Reduced risk of bit-widening.
tf.Tensor
mathematical dunder methods use new type promotion.tf.constant
can returnWeakTensor
.tf.constant
allows implicit conversions when a Tensor input with a dtype different from thedtype
arg is passed in.tf.Variable
in-place ops (assign
,assign-add
,assign-sub
) allow implicit conversions.tnp.array(1)
andtnp.array(1.0)
returns 32-bit WeakTensor.WeakTensor
s will be created and used for WeakTensor-supporting unary and binary API’s.
More consistent and predictable promotion results
Using a lattice-based system allows the new type promotion to produce consistent and predictable type promotion results.
Old Type Promotion
Changing the order of operations produces inconsistent results using old type promotion.
# Setup
tnp.experimental_enable_numpy_behavior(dtype_conversion_mode="legacy")
a = np.array(1, dtype=np.int8)
b = tf.constant(1)
c = np.array(1, dtype=np.float16)
# (a + b) + c throws an InvalidArgumentError.
try:
tf.add(tf.add(a, b), c)
except tf.errors.InvalidArgumentError as e:
print(f'{type(e)}: {e}') # InvalidArgumentError
<class 'tensorflow.python.framework.errors_impl.InvalidArgumentError'>: cannot compute AddV2 as input #1(zero-based) was expected to be a int8 tensor but is a int32 tensor [Op:AddV2] name:
# (b + a) + c returns an i32 result.
tf.add(tf.add(b, a), c) # <tf.Tensor: shape=(), dtype=int32, numpy=3>
<tf.Tensor: shape=(), dtype=int32, numpy=3>
New Type Promotion
New type promotion produces consistent results regardless of the order.
tnp.experimental_enable_numpy_behavior(dtype_conversion_mode="all")
a = np.array(1, dtype=np.int8)
b = tf.constant(1)
c = np.array(1, dtype=np.float16)
WARNING:tensorflow:UserWarning: enabling the new type promotion must happen at the beginning of the program. Please ensure no TF APIs have been used yet.
# (a + b) + c returns a f16 result.
tf.add(tf.add(a, b), c) # <tf.Tensor: shape=(), dtype=float16, numpy=3.0>
<tf.Tensor: shape=(), dtype=float16, numpy=3.0>
# (b + a) + c also returns a f16 result.
tf.add(tf.add(b, a), c) # <tf.Tensor: shape=(), dtype=float16, numpy=3.0>
<tf.Tensor: shape=(), dtype=float16, numpy=3.0>
Reduced risk of bit-widening
Old Type Promotion
Old type promotion often resulted in 64-bit results.
tnp.experimental_enable_numpy_behavior(dtype_conversion_mode="legacy")
np.array(3.2, np.float16) + tf.constant(1, tf.int8) + tf.constant(50) # <tf.Tensor: shape=(), dtype=float64, numpy=54.19921875>
<tf.Tensor: shape=(), dtype=float64, numpy=54.19921875>
New Type Promotion
New type promotion returns results with minimal number of bits necessary.
tnp.experimental_enable_numpy_behavior(dtype_conversion_mode="all")
WARNING:tensorflow:UserWarning: enabling the new type promotion must happen at the beginning of the program. Please ensure no TF APIs have been used yet.
np.array(3.2, np.float16) + tf.constant(1, tf.int8) + tf.constant(50) # <tf.Tensor: shape=(), dtype=float16, numpy=54.2>
<tf.Tensor: shape=(), dtype=float16, numpy=54.1875>
tf.Tensor mathematical dunder methods
All tf.Tensor
mathematical dunder methods will follow the new type promotion.
-tf.constant(5) # <tf.Tensor: shape=(), dtype=int32, numpy=-5, weak=True>
<tf.Tensor: shape=(), dtype=int32, numpy=-5, weak=True>
tf.constant(5, tf.int16) - tf.constant(1, tf.float32) # <tf.Tensor: shape=(), dtype=float32, numpy=4.0>
<tf.Tensor: shape=(), dtype=float32, numpy=4.0>
tf.Variable in-place ops
Implicit conversions will be allowed in tf.Variable
in-place ops.
Note: Any promotion that results in a dtype that is different from the variable’s original dtype will be not allowed. This is because tf.Variable
cannot change its dtype.
tnp.experimental_enable_numpy_behavior(dtype_conversion_mode="all")
a = tf.Variable(10, tf.int32)
a.assign_add(tf.constant(5, tf.int16)) # <tf.Variable shape=() dtype=int32, numpy=15>
WARNING:tensorflow:UserWarning: enabling the new type promotion must happen at the beginning of the program. Please ensure no TF APIs have been used yet.
<tf.Variable 'UnreadVariable' shape=() dtype=int32, numpy=15>
tf.constant implicit conversions
In the old type promotion, tf.constant
required an input Tensor to have the same dtype as the dtype argument. However, in the new type promotion, we implicitly convert Tensor to the specified dtype.
tnp.experimental_enable_numpy_behavior(dtype_conversion_mode="all")
a = tf.constant(10, tf.int16)
tf.constant(a, tf.float32) # <tf.Tensor: shape=(), dtype=float32, numpy=10.0>
WARNING:tensorflow:UserWarning: enabling the new type promotion must happen at the beginning of the program. Please ensure no TF APIs have been used yet.
<tf.Tensor: shape=(), dtype=float32, numpy=10.0>
TF-NumPy Array
tnp.array
defaults to i32*
and f32*
for python inputs using the new type promotion.
tnp.array(1) # <tf.Tensor: shape=(), dtype=int32, numpy=1, weak=True>
<tf.Tensor: shape=(), dtype=int32, numpy=1, weak=True>
tnp.array(1.0) # <tf.Tensor: shape=(), dtype=int32, numpy=1, weak=True>
<tf.Tensor: shape=(), dtype=float32, numpy=1.0, weak=True>
Input Type Inference
This is how different inputs’ types are inferred in the new type promotion.
tf.Tensor
: Sincetf.Tensor
has a dtype property, we don’t do further inference.- NumPy types: This includes types like
np.array(1)
,np.int16(1)
, andnp.float
. Since NumPy inputs also have a dtype property, we take the dtype property as the result inference type. Note that NumPy defaults toi64
andf64
. - Python scalars/Nested types: This includes types like
1
,[1, 2, 3]
, and(1.0, 2.0)
.- Python
int
is inferred asi32*
. - Python
float
is inferred asf32*
. - Python
complex
is inferred asc128*
.
- Python
- If the input doesn’t fall into any of the above categories but has a dtype property, we take the dtype property as the result inference type.
Further Reading
The new type promotion closely resembles JAX-NumPy’s type promotion. If you want to know more details about the new type promotion and the design choices, check out the resources below.
WeakTensor-supporting APIs
Below is a list of APIs that supports WeakTensor
.
For an unary op, this means that if an input with no user-specified type is passed in, it will return a WeakTensor
.
For a binary op, it will follow the promotion table here. It may or may not return a WeakTensor
depending on the promotion result of the two inputs.
Note: All mathematical operations (+
, -
, *
, …) are supported.
tf.bitwise.invert
tf.clip_by_value
tf.debugging.check_numerics
tf.expand_dims
tf.identity
tf.image.adjust_brightness
tf.image.adjust_gamma
tf.image.extract_patches
tf.image.random_brightness
tf.image.stateless_random_brightness
tf.linalg.diag
tf.linalg.diag_part
tf.linalg.matmul
tf.linalg.matrix_transpose
tf.linalg.tensor_diag_part
tf.linalg.trace
tf.math.abs
tf.math.acos
tf.math.acosh
tf.math.add
tf.math.angle
tf.math.asin
tf.math.asinh
tf.math.atan
tf.math.atanh
tf.math.ceil
tf.math.conj
tf.math.cos
tf.math.cosh
tf.math.digamma
tf.math.divide_no_nan
tf.math.divide
tf.math.erf
tf.math.erfc
tf.math.erfcinv
tf.math.erfinv
tf.math.exp
tf.math.expm1
tf.math.floor
tf.math.floordiv
tf.math.floormod
tf.math.imag
tf.math.lgamma
tf.math.log1p
tf.math.log_sigmoid
tf.math.log
tf.math.multiply_no_nan
tf.math.multiply
tf.math.ndtri
tf.math.negative
tf.math.pow
tf.math.real
tf.math.real
tf.math.reciprocal_no_nan
tf.math.reciprocal
tf.math.reduce_euclidean_norm
tf.math.reduce_logsumexp
tf.math.reduce_max
tf.math.reduce_mean
tf.math.reduce_min
tf.math.reduce_prod
tf.math.reduce_std
tf.math.reduce_sum
tf.math.reduce_variance
tf.math.rint
tf.math.round
tf.math.rsqrt
tf.math.scalar_mul
tf.math.sigmoid
tf.math.sign
tf.math.sin
tf.math.sinh
tf.math.softplus
tf.math.special.bessel_i0
tf.math.special.bessel_i0e
tf.math.special.bessel_i1
tf.math.special.bessel_i1e
tf.math.special.bessel_j0
tf.math.special.bessel_j1
tf.math.special.bessel_k0
tf.math.special.bessel_k0e
tf.math.special.bessel_k1
tf.math.special.bessel_k1e
tf.math.special.bessel_y0
tf.math.special.bessel_y1
tf.math.special.dawsn
tf.math.special.expint
tf.math.special.fresnel_cos
tf.math.special.fresnel_sin
tf.math.special.spence
tf.math.sqrt
tf.math.square
tf.math.subtract
tf.math.tan
tf.math.tanh
tf.nn.depth_to_space
tf.nn.elu
tf.nn.gelu
tf.nn.leaky_relu
tf.nn.log_softmax
tf.nn.relu6
tf.nn.relu
tf.nn.selu
tf.nn.softsign
tf.nn.space_to_depth
tf.nn.swish
tf.ones_like
tf.realdiv
tf.reshape
tf.squeeze
tf.stop_gradient
tf.transpose
tf.truncatediv
tf.truncatemod
tf.zeros_like
tf.experimental.numpy.abs
tf.experimental.numpy.absolute
tf.experimental.numpy.amax
tf.experimental.numpy.amin
tf.experimental.numpy.angle
tf.experimental.numpy.arange
tf.experimental.numpy.arccos
tf.experimental.numpy.arccosh
tf.experimental.numpy.arcsin
tf.experimental.numpy.arcsinh
tf.experimental.numpy.arctan
tf.experimental.numpy.arctanh
tf.experimental.numpy.around
tf.experimental.numpy.array
tf.experimental.numpy.asanyarray
tf.experimental.numpy.asarray
tf.experimental.numpy.ascontiguousarray
tf.experimental.numpy.average
tf.experimental.numpy.bitwise_not
tf.experimental.numpy.cbrt
tf.experimental.numpy.ceil
tf.experimental.numpy.conj
tf.experimental.numpy.conjugate
tf.experimental.numpy.copy
tf.experimental.numpy.cos
tf.experimental.numpy.cosh
tf.experimental.numpy.cumprod
tf.experimental.numpy.cumsum
tf.experimental.numpy.deg2rad
tf.experimental.numpy.diag
tf.experimental.numpy.diagflat
tf.experimental.numpy.diagonal
tf.experimental.numpy.diff
tf.experimental.numpy.empty_like
tf.experimental.numpy.exp2
tf.experimental.numpy.exp
tf.experimental.numpy.expand_dims
tf.experimental.numpy.expm1
tf.experimental.numpy.fabs
tf.experimental.numpy.fix
tf.experimental.numpy.flatten
tf.experimental.numpy.flip
tf.experimental.numpy.fliplr
tf.experimental.numpy.flipud
tf.experimental.numpy.floor
tf.experimental.numpy.full_like
tf.experimental.numpy.imag
tf.experimental.numpy.log10
tf.experimental.numpy.log1p
tf.experimental.numpy.log2
tf.experimental.numpy.log
tf.experimental.numpy.max
tf.experimental.numpy.mean
tf.experimental.numpy.min
tf.experimental.numpy.moveaxis
tf.experimental.numpy.nanmean
tf.experimental.numpy.negative
tf.experimental.numpy.ones_like
tf.experimental.numpy.positive
tf.experimental.numpy.prod
tf.experimental.numpy.rad2deg
tf.experimental.numpy.ravel
tf.experimental.numpy.real
tf.experimental.numpy.reciprocal
tf.experimental.numpy.repeat
tf.experimental.numpy.reshape
tf.experimental.numpy.rot90
tf.experimental.numpy.round
tf.experimental.numpy.signbit
tf.experimental.numpy.sin
tf.experimental.numpy.sinc
tf.experimental.numpy.sinh
tf.experimental.numpy.sort
tf.experimental.numpy.sqrt
tf.experimental.numpy.square
tf.experimental.numpy.squeeze
tf.experimental.numpy.std
tf.experimental.numpy.sum
tf.experimental.numpy.swapaxes
tf.experimental.numpy.tan
tf.experimental.numpy.tanh
tf.experimental.numpy.trace
tf.experimental.numpy.transpose
tf.experimental.numpy.triu
tf.experimental.numpy.vander
tf.experimental.numpy.var
tf.experimental.numpy.zeros_like
Originally published on the