By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
World of SoftwareWorld of SoftwareWorld of Software
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Search
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
Reading: Inside a Low-Cost, Serverless Data Lineage System Built on AWS | HackerNoon
Share
Sign In
Notification Show More
Font ResizerAa
World of SoftwareWorld of Software
Font ResizerAa
  • Software
  • Mobile
  • Computing
  • Gadget
  • Gaming
  • Videos
Search
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Have an existing account? Sign In
Follow US
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
World of Software > Computing > Inside a Low-Cost, Serverless Data Lineage System Built on AWS | HackerNoon
Computing

Inside a Low-Cost, Serverless Data Lineage System Built on AWS | HackerNoon

News Room
Last updated: 2025/12/15 at 6:54 AM
News Room Published 15 December 2025
Share
Inside a Low-Cost, Serverless Data Lineage System Built on AWS | HackerNoon
SHARE

Problem Statement

I build and operate real-time data/ML platforms, and one recurring pain I see inside any data org is this: “Why does this attribute have this value?” When a company name, industry, or revenue looks wrong, investigations often stall without engineering help. I wanted a way for analysts, support, and product folks to self-serve the “why,” with history and evidence, without waking up an engineer.

This is the blueprint I shipped: A serverless, low‑maintenance traceability service that queries terabytes in seconds and costs peanuts.

What this tool needed to do (for non‑engineers)

  • Explain a value: Why does attribute X for company Y equal Z right now?
  • Show the history: When did it change? What were the past versions?
  • Show evidence: Which sources and rules produced that value?
  • Be self‑serve: An API + simple UI so teams can investigate without engineers

The architecture (serverless on purpose)

  • Amazon API Gateway: a secure front door for the API

  • AWS Lambda: stateless request handlers (no idle compute to pay for)

  • Amazon S3 + Apache Hudi: cheap storage with time travel and upserts

  • AWS Glue Data Catalog: schema and partition metadata

  • Amazon Athena: SQL over S3/Hudi, pay-per-data‑scanned, zero infra

Why these choices?

  • Cost: storage on S3 is cheap; Athena charges only for bytes scanned; Lambda is pay‑per‑invocation
  • Scale: S3/Hudi trivially supports TB→PB, and Athena scales horizontally
  • Maintenance: no fleet to patch; infra footprint stays tiny as usage grows

:::info
Data layout: performance is a data problem (not a compute problem) Athena is fast when it reads almost nothing, and slow when it plans or scans too much. The entire project hinged on getting partitions and projection right.

:::

Partitioning strategy (based on query patterns)

  • created_date (date): most queries are time‑bounded
  • attributename (enum): employees, revenue, linkedinurl, founded_year, industry, etc.
  • entityidmod (integer bucket): mod(entity_id, N) to spread hot keys evenly

This limits data scanned and, more importantly, narrows what partition metadata Athena needs to consider.

The three things that made it fast:

  1. Partitioning:

  2. Put only frequently filtered columns in the partition spec.

  3. Use integer bucketing (mod) for high‑cardinality keys like entity_id.

  4. Partition Indexing (first win, partial):

  5. We enabled partition indexing so Athena could prune partition metadata faster during planning.

  6. This helped until the partition count grew large; planning was still the dominant cost.

  7. Partition Projection (the actual game‑changer):

  8. Instead of asking Glue to store millions of partitions, we taught Athena how partitions are shaped.

  9. Result: planning time close to zero; queries jumped from “slow-ish with growth” to consistently 1–2 seconds for typical workloads.

Athena TBLPROPERTIES (minimal example)

TBLPROPERTIES (
  'projection.enabled'='true',

  'projection.attribute_name.type'='enum',
  'projection.attribute_name.values'='employees,revenue,linkedin_url,founded_year,industry',

  'projection.entity_id_mod.type'='integer',
  'projection.entity_id_mod.interval'='1',
  'projection.entity_id_mod.range'='0,9',

  'projection.created_date.type'='date',
  'projection.created_date.format'='yyyy-MM-dd',
  'projection.created_date.interval'='1',
  'projection.created_date.interval.unit'='days',
  'projection.created_date.range'='2022-01-01,NOW'
)

Why this works

  • Athena no longer fetches a huge partition list from Glue; it calculates partitions on the fly from the rules above
  • Scanning drops to “only the files that match the constraints”
  • Planning time becomes negligible, even as data and partitions grow

What surprised me (and what was hard)

  • The “gotcha” was query planning, not compute. We often optimize engines, but here the slowest part was enumerating partitions. Partition projection solved the right problem.
  • Picking partition keys is half art, half science. Over-partition and you drown in metadata; under-partition and you pay per scan. Start from your top 3 query predicates and work backwards.
  • Enum partitions are underrated. For low‑cardinality domains (attribute_name), enum projection is both simple and fast.
  • Bucketing (via mod) is pragmatic. True bucketing support is limited in Athena, but a mod-based integer partition gets you most of the benefits.

Cost & latency (real numbers)

  • Typical queries: 1–2 seconds end‑to‑end (Lambda cold starts excluded)
  • Data size: multiple TB in S3/Hudi
  • Cost: pennies per 100s of requests (Athena scan + Lambda invocations)
  • Ops: near‑zero—no servers, no manual compaction beyond Hudi maintenance cadence

Common pitfalls (so you can skip them)

  • Don’t partition by high‑cardinality fields directly (e.g., raw entity_id); you’ll explode the partition count
  • Don’t skip projection if you expect partitions to grow; indexing alone won’t save you
  • Don’t save partition metadata for every key if a rule can generate it (projection exists exactly for that reason)
  • Don’t leave Glue schemas to drift; version them and validate in CI

Try this at home (a minimal checklist)

  • Model your top 3 queries; pick partitions that match those predicates

  • Use enum projection for low‑cardinality fields; date projection for time; integer ranges for buckets

  • Store data in columnar formats (Parquet/ORC) via Hudi to keep scans small and enable time travel

  • Add a thin API (API Gateway + Lambda) to turn traceability SQL into JSON for your UI

  • Measure planning vs. scan time; optimize the former first

What this unlocked for my users

  • Analysts and support can answer “why” without engineers
  • Product can audit attribute changes by time and cause
  • Engineering spends more time on fixes and less time on forensics
  • The org trusts the data more because the evidence is one click away

Closing thought

Great performance is usually a data layout story. Before you scale compute, fix how you store and find bytes. In serverless analytics, the fastest query is the one that plans instantly and reads almost nothing, and partition projection is the lever that gets you there.

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Share This Article
Facebook Twitter Email Print
Share
What do you think?
Love0
Sad0
Happy0
Sleepy0
Angry0
Dead0
Wink0
Previous Article The best paid-for iPhone and iPad apps money can buy The best paid-for iPhone and iPad apps money can buy
Next Article Timeline, Features And Safety Concerns Timeline, Features And Safety Concerns
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

248.1k Like
69.1k Follow
134k Pin
54.3k Follow

Latest News

Washington joins lawsuit opposing 0K fee for H-1B visas allowing foreign STEM and medical workers
Washington joins lawsuit opposing $100K fee for H-1B visas allowing foreign STEM and medical workers
Computing
Where to Find the Top IT Support Services in Central NJ
Where to Find the Top IT Support Services in Central NJ
Trending
OnePlus is cooking up a brand new phone series for 2026 — but will you ever see it?
OnePlus is cooking up a brand new phone series for 2026 — but will you ever see it?
News
From AI-Supported to AI-First: What We’ve Learned Re-Engineering How We Build Software | HackerNoon
From AI-Supported to AI-First: What We’ve Learned Re-Engineering How We Build Software | HackerNoon
Computing

You Might also Like

Washington joins lawsuit opposing 0K fee for H-1B visas allowing foreign STEM and medical workers
Computing

Washington joins lawsuit opposing $100K fee for H-1B visas allowing foreign STEM and medical workers

4 Min Read
From AI-Supported to AI-First: What We’ve Learned Re-Engineering How We Build Software | HackerNoon
Computing

From AI-Supported to AI-First: What We’ve Learned Re-Engineering How We Build Software | HackerNoon

0 Min Read
Filing: Amazon cuts 84 jobs in Washington state, unrelated to broader layoffs
Computing

Filing: Amazon cuts 84 jobs in Washington state, unrelated to broader layoffs

3 Min Read
The HackerNoon Newsletter: Can ChatGPT Outperform the Market? Week 19 (12/15/2025) | HackerNoon
Computing

The HackerNoon Newsletter: Can ChatGPT Outperform the Market? Week 19 (12/15/2025) | HackerNoon

3 Min Read
//

World of Software is your one-stop website for the latest tech news and updates, follow us now to get the news that matters to you.

Quick Link

  • Privacy Policy
  • Terms of use
  • Advertise
  • Contact

Topics

  • Computing
  • Software
  • Press Release
  • Trending

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

World of SoftwareWorld of Software
Follow US
Copyright © All Rights Reserved. World of Software.
Welcome Back!

Sign in to your account

Lost your password?