By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
World of SoftwareWorld of SoftwareWorld of Software
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Search
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
Reading: MaGGIe: Achieving Temporal Consistency in Video Instance Matting | HackerNoon
Share
Sign In
Notification Show More
Font ResizerAa
World of SoftwareWorld of Software
Font ResizerAa
  • Software
  • Mobile
  • Computing
  • Gadget
  • Gaming
  • Videos
Search
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Have an existing account? Sign In
Follow US
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
World of Software > Computing > MaGGIe: Achieving Temporal Consistency in Video Instance Matting | HackerNoon
Computing

MaGGIe: Achieving Temporal Consistency in Video Instance Matting | HackerNoon

News Room
Last updated: 2025/12/17 at 5:57 PM
News Room Published 17 December 2025
Share
MaGGIe: Achieving Temporal Consistency in Video Instance Matting | HackerNoon
SHARE

Table of Links

Abstract and 1. Introduction

  1. Related Works

  2. MaGGIe

    3.1. Efficient Masked Guided Instance Matting

    3.2. Feature-Matte Temporal Consistency

  3. Instance Matting Datasets

    4.1. Image Instance Matting and 4.2. Video Instance Matting

  4. Experiments

    5.1. Pre-training on image data

    5.2. Training on video data

  5. Discussion and References

Supplementary Material

  1. Architecture details

  2. Image matting

    8.1. Dataset generation and preparation

    8.2. Training details

    8.3. Quantitative details

    8.4. More qualitative results on natural images

  3. Video matting

    9.1. Dataset generation

    9.2. Training details

    9.3. Quantitative details

    9.4. More qualitative results

Abstract

Human matting is a foundation task in image and video processing where human foreground pixels are extracted from the input. Prior works either improve the accuracy by additional guidance or improve the temporal consistency of a single instance across frames. We propose a new framework MaGGIe, Masked Guided Gradual Human Instance Matting, which predicts alpha mattes progressively for each human instances while maintaining the computational cost, precision, and consistency. Our method leverages modern architectures, including transformer attention and sparse convolution, to output all instance mattes simultaneously without exploding memory and latency. Although keeping constant inference costs in the multiple-instance scenario, our framework achieves robust and versatile performance on our proposed synthesized benchmarks. With the higher quality image and video matting benchmarks, the novel multi-instance synthesis approach from publicly available sources is introduced to increase the generalization of models in real-world scenarios. Our code and datasets are available at https://maggie-matt.github.io.

1. Introduction

In image matting, a trivial solution is to predict the pixel transparency – alpha matte α ∈ [0, 1] for precise background removal. Considering a saliency image I with two main components, foreground F and background B, the image I is expressed as I = αF + (1 − α)B. Because of the ambiguity in detecting the foreground region, for example, whether a person’s belongings are a part of the human foreground or not, many methods [11, 16, 31, 37] leverage additional guidance, typically trimaps, defining foreground, background, and unknown or transition regions. However, creating trimaps, especially for videos, is resourceintensive. Alternative binary masks [39, 56] are simpler to obtain by human drawings or off-the-shelf segmentation models while offering greater flexibility without hardly con-

straint output values of regions as trimaps. Our work focuses but is not limited to human matting because of the higher number of available academic datasets and user demand in many applications [1, 2, 12, 15, 44] compared to other objects.

When working with video input, the problem of creating trimap guidance is often resolved by guidance propagation [17, 45] where the main idea coming from video object segmentation [8, 38]. However, the performance of trimap propagation degrades when video length grows. The failed trimap predictions, which miss some natures like the alignment between foreground-unknown-background regions, lead to incorrect alpha mattes. We observe that using binary masks for each frame gives more robust results. However, the consistency between the frame’s output is still important for any video matting approach. For example, holes appearing in a random frame because of wrong guidance should be corrected by consecutive frames. Many works [17, 32, 34, 45, 53] constrain the temporal consistency at feature maps between frames. Since the alpha matte values are very sensitive, feature-level aggregation is not an absolute guarantee of the problem. Some methods [21, 50] in video segmentation and matting compute the incoherent regions to update values across frames. We propose a temporal consistency module that works in both feature and output spaces to produce consistent alpha mattes.

Besides the temporal consistency, when extending the instance matting to videos containing a large number of frames and instances, the careful network design to prevent the explosion in the computational cost is also a key challenge. In this work, we propose several adjustments to the popular mask-guided progressive refinement architecture [56]. Firstly, by using the mask guidance embedding inspired by AOT [55], the input size reduces to a constant number of channels. Secondly, with the advancement of transformer attention in various vision tasks [40–42], we inherit the query-based instance segmentation [7, 19, 23] to predict instance mattes in one forward pass instead of separated estimation. It also replaces the complex refinement in previous work with the interaction between instances by attention mechanism. To save the high cost of transformer attention, we only perform multi-instance prediction at the coarse level and adapt the progressive refinement at multiple scales [18, 56]. However, using full convolution for the refinement as previous works are inefficient as less than 10% of values are updated at each scale, which is also mentioned in [50]. The replacement of sparse convolution [36] saves the inference cost significantly, keeping the constant complexity of the algorithm since only interested locations are refined. Nevertheless, the lack of information at a larger scale when using sparse convolution can cause a dominance problem, which leads to the higher-scale prediction copying the lower outputs without adding fine-grained details. We propose an instance guidance method to help the coarser prediction guide but not contribute to the finer alpha matte.

In addition to the framework design, we propose a new training video dataset and benchmarks for instance-awareness matting. Besides the new large-scale high-quality synthesized image instance matting, an extension of the current instance image matting benchmark adds more robustness with different guidance quality. For video input, our synthesized training and benchmark are constructed from various public instance-agnostic datasets with three levels of difficulty.

In summary, our contributions include:

• A highly efficient instance matting framework with mask guidance that has all instances interacting and processed in a single forward pass.

• A novel approach that considers feature-matte levels to maintain matte temporal consistency in videos.

• Diverse training datasets and robust benchmarks for image and video instance matting that bridge the gap between synthesized and natural cases.

:::info
This paper is available on arxiv under CC by 4.0 Deed (Attribution 4.0 International) license.

:::

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Share This Article
Facebook Twitter Email Print
Share
What do you think?
Love0
Sad0
Happy0
Sleepy0
Angry0
Dead0
Wink0
Previous Article Jared Isaacman confirmed as next head of NASA |  News Jared Isaacman confirmed as next head of NASA | News
Next Article Beyond antivirus: Why anti-scam tech is now your digital must-have Beyond antivirus: Why anti-scam tech is now your digital must-have
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

248.1k Like
69.1k Follow
134k Pin
54.3k Follow

Latest News

The Top 5 LinkedIn Trends You’ll See in 2025
The Top 5 LinkedIn Trends You’ll See in 2025
Computing
Today's NYT Strands Hints, Answer and Help for Dec. 18 #655 – CNET
Today's NYT Strands Hints, Answer and Help for Dec. 18 #655 – CNET
News
How Black Friday is being reshaped by Chinese e-commerce platforms before Trump returns · TechNode
How Black Friday is being reshaped by Chinese e-commerce platforms before Trump returns · TechNode
Computing
Netflix just added one of the best Christmas thriller movies — and you won’t expect the dark twist
Netflix just added one of the best Christmas thriller movies — and you won’t expect the dark twist
News

You Might also Like

The Top 5 LinkedIn Trends You’ll See in 2025
Computing

The Top 5 LinkedIn Trends You’ll See in 2025

2 Min Read
How Black Friday is being reshaped by Chinese e-commerce platforms before Trump returns · TechNode
Computing

How Black Friday is being reshaped by Chinese e-commerce platforms before Trump returns · TechNode

3 Min Read
How El Pollo Loco Creates Content at Scale with Influencers
Computing

How El Pollo Loco Creates Content at Scale with Influencers

4 Min Read
How to Build Real-World Drone Avatars with WebRTC and Python | HackerNoon
Computing

How to Build Real-World Drone Avatars with WebRTC and Python | HackerNoon

7 Min Read
//

World of Software is your one-stop website for the latest tech news and updates, follow us now to get the news that matters to you.

Quick Link

  • Privacy Policy
  • Terms of use
  • Advertise
  • Contact

Topics

  • Computing
  • Software
  • Press Release
  • Trending

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

World of SoftwareWorld of Software
Follow US
Copyright © All Rights Reserved. World of Software.
Welcome Back!

Sign in to your account

Lost your password?