Table of Links
Abstract and 1 Introduction
1.1 ESPRIT algorithm and central limit error scaling
1.2 Contribution
1.3 Related work
1.4 Technical overview and 1.5 Organization
2 Proof of the central limit error scaling
3 Proof of the optimal error scaling
4 Second-order eigenvector perturbation theory
5 Strong eigenvector comparison
5.1 Construction of the “good” P
5.2 Taylor expansion with respect to the error terms
5.3 Error cancellation in the Taylor expansion
5.4 Proof of Theorem 5.1
A Preliminaries
B Vandermonde matrice
C Deferred proofs for Section 2
D Deferred proofs for Section 4
E Deferred proofs for Section 5
F Lower bound for spectral estimation
References
1.1 ESPRIT algorithm and central limit error scaling
Define the location and intensity vectors
The minimum is taken over all permutations π on {1, . . . , r}.
This paper is available on arxiv under CC BY 4.0 DEED license.