By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
World of SoftwareWorld of SoftwareWorld of Software
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Search
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
Reading: These Startups Are Building Advanced AI Models Without Data Centers
Share
Sign In
Notification Show More
Font ResizerAa
World of SoftwareWorld of Software
Font ResizerAa
  • Software
  • Mobile
  • Computing
  • Gadget
  • Gaming
  • Videos
Search
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Have an existing account? Sign In
Follow US
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
World of Software > Gadget > These Startups Are Building Advanced AI Models Without Data Centers
Gadget

These Startups Are Building Advanced AI Models Without Data Centers

News Room
Last updated: 2025/04/30 at 12:23 PM
News Room Published 30 April 2025
Share
SHARE

Researchers have trained a new kind of large language model (LLM) using GPUs dotted across the world and fed private as well as public data—a move that suggests that the dominant way of building artificial intelligence could be disrupted.

Flower AI and Vana, two startups pursuing unconventional approaches to building AI, worked together to create the new model, called Collective-1.

Flower created techniques that allow training to be spread across hundreds of computers connected over the internet. The company’s technology is already used by some firms to train AI models without needing to pool compute resources or data. Vana provided sources of data including private messages from X, Reddit, and Telegram.

Collective-1 is small by modern standards, with 7 billion parameters—values that combine to give the model its abilities—compared to hundreds of billions for today’s most advanced models, such as those that power programs like ChatGPT, Claude, and Gemini.

Nic Lane, a computer scientist at the University of Cambridge and cofounder of Flower AI, says that the distributed approach promises to scale far beyond the size of Collective-1. Lane adds that Flower AI is partway through training a model with 30 billion parameters using conventional data, and plans to train another model with 100 billion parameters—close to the size offered by industry leaders—later this year. “It could really change the way everyone thinks about AI, so we’re chasing this pretty hard,” Lane says. He says the startup is also incorporating images and audio into training to create multimodal models.

Distributed model-building could also unsettle the power dynamics that have shaped the AI industry.

AI companies currently build their models by combining vast amounts of training data with huge quantities of compute concentrated inside datacenters stuffed with advanced GPUs that are networked together using super-fast fiber-optic cables. They also rely heavily on datasets created by scraping publicly accessible—although sometimes copyrighted—material, including websites and books.

The approach means that only the richest companies, and nations with access to large quantities of the most powerful chips, can feasibly develop the most powerful and valuable models. Even open source models, like Meta’s Llama and R1 from DeepSeek, are built by companies with access to large datacenters. Distributed approaches could make it possible for smaller companies and universities to build advanced AI by pooling disparate resources together. Or it could allow countries that lack conventional infrastructure to network together several datacenters to build a more powerful model.

Lane believes that the AI industry will increasingly look towards new methods that allow training to break out of individual datacenters. The distributed approach “allows you to scale compute much more elegantly than the datacenter model,” he says.

Helen Toner, an expert on AI governance at the Center for Security and Emerging Technology, says Flower AI’s approach is “interesting and potentially very relevant” to AI competition and governance. “It will probably continue to struggle to keep up with the frontier, but could be an interesting fast-follower approach,” Toner says.

Divide and Conquer

Distributed AI training involves rethinking the way calculations used to build powerful AI systems are divided up. Creating an LLM involves feeding huge amounts of text into a model that adjusts its parameters in order to produce useful responses to a prompt. Inside a datacenter the training process is divided up so that parts can be run on different GPUs, and then periodically consolidated into a single, master model.

The new approach allows the work normally done inside a large datacenter to be performed on hardware that may be many miles away and connected over a relatively slow or variable internet connection.

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Share This Article
Facebook Twitter Email Print
Share
What do you think?
Love0
Sad0
Happy0
Sleepy0
Angry0
Dead0
Wink0
Previous Article Intel Makes “AI Flame Graphs” Open-Source
Next Article Starlink Tackles Wi-Fi Dead Zones With $40 Router Mini: Do You Need One?
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

248.1k Like
69.1k Follow
134k Pin
54.3k Follow

Latest News

End your phone ‘spam’ nightmare with a single button tap with Google new feature
News
China Has Attempted What Might Be the First-Ever Orbital Refueling of a Satellite
Gadget
Activision pulls Call of Duty game after PC players are hacked
News
We Test Gear & Track Prices All Year—We Found 191 Actually Good Prime Day Deals
Gadget

You Might also Like

Gadget

China Has Attempted What Might Be the First-Ever Orbital Refueling of a Satellite

4 Min Read
Gadget

We Test Gear & Track Prices All Year—We Found 191 Actually Good Prime Day Deals

121 Min Read
Gadget

It’s hard to get excited by the Galaxy Watch 8 launch when the Watch 7 is this cheap

3 Min Read
Gadget

I can’t believe how cheap this Ninja air fryer is for Prime Day

3 Min Read
//

World of Software is your one-stop website for the latest tech news and updates, follow us now to get the news that matters to you.

Quick Link

  • Privacy Policy
  • Terms of use
  • Advertise
  • Contact

Topics

  • Computing
  • Software
  • Press Release
  • Trending

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

World of SoftwareWorld of Software
Follow US
Copyright © All Rights Reserved. World of Software.
Welcome Back!

Sign in to your account

Lost your password?