By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
World of SoftwareWorld of SoftwareWorld of Software
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Search
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
Reading: Tuning the Pixels, Not the Soul: How Filter Atoms Remake ConvNets | HackerNoon
Share
Sign In
Notification Show More
Font ResizerAa
World of SoftwareWorld of Software
Font ResizerAa
  • Software
  • Mobile
  • Computing
  • Gadget
  • Gaming
  • Videos
Search
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Have an existing account? Sign In
Follow US
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
World of Software > Computing > Tuning the Pixels, Not the Soul: How Filter Atoms Remake ConvNets | HackerNoon
Computing

Tuning the Pixels, Not the Soul: How Filter Atoms Remake ConvNets | HackerNoon

News Room
Last updated: 2025/07/01 at 12:29 PM
News Room Published 1 July 2025
Share
SHARE

The standard practice of pre-training and fine-tuning [13,17,60,70] entails models initially undergoing pre-training on datasets such as ImageNet-21K, BookCorpus, and Common Crawl [46, 51, 79]. Subsequently, these models are fine-tuned to enhance their convergence and performance on specific tasks [12].

In the realm of parameter-efficient fine-tuning [78], various approaches have been proposed. LoRA [16] fine-tunes lower-rank matrices at each layer to represent weight updates. The adapter [15] approach inserts small modules between layers and reduces parameters by only tuning these adapters [3,19,28,74]. Visual prompt tuning (VPT) [18, 58] has introduced a limited number of learnable parameters for optimization while keeping the backbone frozen. SSF [30] proposes scaling and shifting deep features extracted by a pre-trained model.

Compared with transformer-based models [5, 31, 61, 73], convolution has been used for a long time as the main module to extract the image features in computer vision tasks. With an inductive prior, convolution-based models require fewer training images and computation resources to achieve good generalization. Convolution-based architectures have been largely studied [13, 32, 57] and have found multiple applications, such as feature extracting [48], image generation [20, 59], super-resoluton [68], and et cetera. Numerous studies explore the integration of convolutional techniques with vision transformers to enhance their performance [10,47]. Parameter-efficient fine-tuning in downstream tasks is crucial and requires further examinations when utilizing pre-trained large-scale convolution-based models.

Discriminative and generative tasks represent fundamental concepts in machine learning. Discriminative models [11, 13, 39, 80] are designed to distinguish between various data instances, while generative models [20, 48, 59, 68] are employed to create new data instances. Discriminative models have been applied to image classifications [13, 32, 57], object detection [39, 80], and semantic segmentation [11]. Generative models have been extensively studied for image synthesis, including variational autoencoder [22,48,63,65], diffusion [4,49,59], and autoregressive models [37, 42, 64].

In this study, our primary focus is on implementing parameter-efficient finetuning techniques for two tasks: image classification using ConvNeXt [32] and image synthesis employing Stable Diffusion [49].

In this work, we proposed the parameter-efficient fine-tuning method for large convolutional models by formulating the convolutional layers over the filter subspace. Fine-tuning filter atoms composed of a small number of parameters and keeping the atom coefficients unchanged, is notably efficient in terms of parameters. It successfully maintains the capabilities of pre-trained models while avoiding overfitting to downstream tasks. We then formulate a simple yet effective way to achieve an overcomplete filter subspace by decomposing each filter atom over another set of filter atoms, thereby expanding the parameter space available for fine-tuning as needed. Our approach has demonstrated effectiveness in different configurations on both discriminate and generative tasks.

Limitations. Our method, which concentrates on tuning models within the filter subspace, is particularly advantageous for ConvNets. While it can be naturally extended to linear layers through appropriate mathematical formulations, the full potential of our approach when applied to linear layers remains underexplored.

  • Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences pp. 183–202 (2009) 4

  • Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems (2020) 1

  • Chen, S., Ge, C., Tong, Z., Wang, J., Song, Y., Wang, J., Luo, P.: Adaptformer: Adapting vision transformers for scalable visual recognition. Advances in Neural Information Processing Systems (2022) 1, 13

  • Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. Advances in neural information processing systems (2021) 14

  • Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16×16 words: Transformers for image recognition at scale. In: International Conference on Learning Representations (2020) 1, 13

  • Edalati, A., Tahaei, M., Kobyzev, I., Nia, V.P., Clark, J.J., Rezagholizadeh, M.: Krona: Parameter efficient tuning with kronecker adapter. arXiv preprint arXiv:2212.10650 (2022) 7

  • Evgeniou, A., Pontil, M.: Multi-task feature learning. Advances in neural information processing systems (2007) 3

  • Friedman, D., Dieng, A.B.: The vendi score: A diversity evaluation metric for machine learning. arXiv preprint arXiv:2210.02410 (2022) 10

  • Gildenblat, J., contributors: Pytorch library for cam methods. https://github.com/jacobgil/pytorch-grad-cam (2021) 5

  • Guo, J., Han, K., Wu, H., Tang, Y., Chen, X., Wang, Y., Xu, C.: Cmt: Convolutional neural networks meet vision transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) 14

  • Hao, S., Zhou, Y., Guo, Y.: A brief survey on semantic segmentation with deep learning. Neurocomputing pp. 302–321 (2020) 14

  • He, K., Girshick, R., Dollár, P.: Rethinking imagenet pre-training. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2019) 13

  • He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (2016) 1, 3, 6, 9, 13, 14, 12

  • Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems (2017) 10

  • Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., Attariyan, M., Gelly, S.: Parameter-efficient transfer learning for nlp. In: International Conference on Machine Learning (2019) 13

  • Hu, E.J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W., et al.: Lora: Low-rank adaptation of large language models. In: International Conference on Learning Representations (2021) 1, 2, 4, 10, 11, 12, 13

  • Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (2017) 13

  • Jia, M., Tang, L., Chen, B.C., Cardie, C., Belongie, S., Hariharan, B., Lim, S.N.: Visual prompt tuning. In: European Conference on Computer Vision (2022) 1, 13

  • Karimi Mahabadi, R., Henderson, J., Ruder, S.: Compacter: Efficient low-rank hypercomplex adapter layers. Advances in Neural Information Processing Systems (2021) 13

  • Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (2020) 14

  • Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. Artificial intelligence review (2020)

  • Kingma, D., Salimans, T., Poole, B., Ho, J.: Variational diffusion models. Advances in neural information processing systems (2021) 14

  • Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (2015) 9

  • Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.C., Lo, W.Y., Dollár, P., Girshick, R.: Segment anything. arXiv:2304.02643 (2023) 1

  • Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Ph.D. thesis, University of Toronto (2009) 9

  • Kumar, A., Daume III, H.: Learning task grouping and overlap in multi-task learning. International Conference on Machine Learning (2012) 3

  • Kumari, N., Zhang, B., Zhang, R., Shechtman, E., Zhu, J.Y.: Multi-concept customization of text-to-image diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023) 10

  • Li, X.L., Liang, P.: Prefix-tuning: Optimizing continuous prompts for generation. In: Proceedings of the Association for Computational Linguistics (2021) 13

  • Li, Y., Gu, S., Gool, L.V., Timofte, R.: Learning filter basis for convolutional neural network compression. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2019) 2, 3

  • Lian, D., Zhou, D., Feng, J., Wang, X.: Scaling & shifting your features: A new baseline for efficient model tuning. Advances in Neural Information Processing Systems (2022) 1, 13, 3

  • Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision (2021) 13

  • Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (2022) 3, 9, 14

  • Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2018) 10, 12, 3

  • Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Transactions on signal processing pp. 3397–3415 (1993) 4

  • Maurer, A., Pontil, M., Romera-Paredes, B.: Sparse coding for multitask and transfer learning. In: International conference on machine learning (2013) 3

  • Miao, Z., Wang, Z., Chen, W., Qiu, Q.: Continual learning with filter atom swapping. In: International Conference on Learning Representations (2021) 2, 3

  • Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with pixelcnn decoders. Advances in neural information processing systems (2016) 14

  • Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., et al.: Dinov2: Learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023) 10

  • Padilla, R., Netto, S.L., Da Silva, E.A.: A survey on performance metrics for objectdetection algorithms. In: 2020 international conference on systems, signals and image processing (IWSSIP) (2020) 14

  • Papyan, V., Romano, Y., Elad, M.: Convolutional neural networks analyzed via convolutional sparse coding. The Journal of Machine Learning Research 18, 2887– 2938 (2017) 2, 3

  • Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: A review. Neural Networks (2019) 2

  • Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A., Tran, D.: Image transformer. In: International conference on machine learning (2018) 14

  • Qiu, Q., Cheng, X., Sapiro, G., Calderbank, R.: DCFNet: Deep neural network with decomposed convolutional filters. In: International Conference on Machine Learning (2018) 2, 3

  • Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from natural language supervision. In: International conference on machine learning (2021) 10

  • Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners 1

  • Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu, P.J.: Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research (2020) 1, 13

  • Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., Dosovitskiy, A.: Do vision transformers see like convolutional neural networks? Advances in Neural Information Processing Systems (2021) 14

  • Razavi, A., Van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with vq-vae-2. Advances in neural information processing systems (2019) 14

  • Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (2022) 1, 3, 9, 11, 14, 6, 7

  • Romera-Paredes, B., Aung, H., Bianchi-Berthouze, N., Pontil, M.: Multilinear multitask learning. In: International Conference on Machine Learning (2013) 3

  • Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV) (2015) 1, 9, 13

  • Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., Hadsell, R.: Progressive neural networks. NIPS Deep Learning Symposium (2016) 2

  • Santosa, F., Symes, W.W.: Linear inversion of band-limited reflection seismograms. SIAM journal on scientific and statistical computing pp. 1307–1330 (1986) 4

  • Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C., Wightman, R., Cherti, M., Coombes, T., Katta, A., Mullis, C., Wortsman, M., et al.: Laion-5b: An open largescale dataset for training next generation image-text models. Advances in Neural Information Processing Systems (2022)

  • Shen, Z., Liu, Z., Qin, J., Savvides, M., Cheng, K.T.: Partial is better than all: revisiting fine-tuning strategy for few-shot learning. In: Proceedings of the AAAI Conference on Artificial Intelligence (2021) 1

  • Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature (2016) 1

  • Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015) 14

  • Sohn, K., Chang, H., Lezama, J., Polania, L., Zhang, H., Hao, Y., Essa, I., Jiang, L.: Visual prompt tuning for generative transfer learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023) 13

  • Song, Y., Durkan, C., Murray, I., Ermon, S.: Maximum likelihood training of scorebased diffusion models. Advances in Neural Information Processing Systems (2021) 14

  • Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural networks. In: International conference on machine learning (2019) 13

  • Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International conference on machine learning (2021) 13

  • Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E., Azhar, F., et al.: Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023) 1

  • Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. Advances in neural information processing systems (2020) 14

  • Van Den Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In: International conference on machine learning (2016) 14

  • Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. Advances in neural information processing systems (2017) 14

  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in neural information processing systems (2017) 1

  • Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: Cub-200-2011. Tech. Rep. CNS-TR-2011-001, California Institute of Technology (2011) 5, 12

  • Wang, Z., Chen, J., Hoi, S.C.: Deep learning for image super-resolution: A survey. IEEE transactions on pattern analysis and machine intelligence (2020) 14

  • Xie, E., Yao, L., Shi, H., Liu, Z., Zhou, D., Liu, Z., Li, J., Li, Z.: Difffit: Unlocking transferability of large diffusion models via simple parameter-efficient fine-tuning. arXiv preprint arXiv:2304.06648 (2023) 10, 11, 12

  • Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (2017) 13

  • YEH, S.Y., Hsieh, Y.G., Gao, Z., Yang, B.B., Oh, G., Gong, Y.: Navigating textto-image customization: From lycoris fine-tuning to model evaluation. In: International Conference on Learning Representations (2023) 1, 7, 10, 11, 12

  • Yoon, J., Kim, S., Yang, E., Hwang, S.J.: Scalable and order-robust continual learning with additive parameter decomposition. In: International Conference on Learning Representations (2019) 2

  • Yu, W., Luo, M., Zhou, P., Si, C., Zhou, Y., Wang, X., Feng, J., Yan, S.: Metaformer is actually what you need for vision. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (2022) 13

  • Zaken, E.B., Goldberg, Y., Ravfogel, S.: Bitfit: Simple parameter-efficient finetuning for transformer-based masked language-models. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (2022) 1, 10, 11, 12, 13

  • Zhai, M., Chen, L., Mori, G.: Hyper-lifelonggan: Scalable lifelong learning for image conditioned generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021) 2

  • Zhai, X., Puigcerver, J., Kolesnikov, A., Ruyssen, P., Riquelme, C., Lucic, M., Djolonga, J., Pinto, A.S., Neumann, M., Dosovitskiy, A., et al.: A large-scale study of representation learning with the visual task adaptation benchmark. arXiv preprint arXiv:1910.04867 (2019) 8, 10, 12

  • Zhang, Y., Yang, Q.: A survey on multi-task learning. IEEE Transactions on Knowledge and Data Engineering (2021) 3

  • Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. International Journal of Computer Vision (2022) 13

  • Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., Fidler, S.: Aligning books and movies: Towards story-like visual

    explanations by watching movies and reading books. In: Proceedings of the IEEE international conference on computer vision (2015) 1, 13

  • Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: A survey. Proceedings of the IEEE (2023) 14

  • Sign Up For Daily Newsletter

    Be keep up! Get the latest breaking news delivered straight to your inbox.
    By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
    Share This Article
    Facebook Twitter Email Print
    Share
    What do you think?
    Love0
    Sad0
    Happy0
    Sleepy0
    Angry0
    Dead0
    Wink0
    Previous Article The Best Food Dehydrators We’ve Tried From Excalibur, Cosori, and Nesco
    Next Article Best Laptop Deal of the Day: $1,200 Savings on a Killer HP Gaming Rig
    Leave a comment

    Leave a Reply Cancel reply

    Your email address will not be published. Required fields are marked *

    Stay Connected

    248.1k Like
    69.1k Follow
    134k Pin
    54.3k Follow

    Latest News

    Damian Lillard’s career at Bucks comes to end as NBA star wakes up unemployed
    News
    Live Stream vs. Traditional TV: Why ARD and RTL Are Dominating Online
    Gadget
    AMD Preps Some Compute Driver Fixes For Polaris & Hawaii Era GPUs With Linux 6.17
    Computing
    Google makes it easier to let friends and kids control your smart home
    News

    You Might also Like

    Computing

    AMD Preps Some Compute Driver Fixes For Polaris & Hawaii Era GPUs With Linux 6.17

    4 Min Read
    Computing

    Douyin reveals algorithm amid government push · TechNode

    4 Min Read
    Computing

    Redefining IoT Threat Detection: The Power of Cumulative Analysis in the CUMAD Framework | HackerNoon

    13 Min Read
    Computing

    Zhipu AI launches free AI agent as China’s tech race heats up · TechNode

    1 Min Read
    //

    World of Software is your one-stop website for the latest tech news and updates, follow us now to get the news that matters to you.

    Quick Link

    • Privacy Policy
    • Terms of use
    • Advertise
    • Contact

    Topics

    • Computing
    • Software
    • Press Release
    • Trending

    Sign Up for Our Newsletter

    Subscribe to our newsletter to get our newest articles instantly!

    World of SoftwareWorld of Software
    Follow US
    Copyright © All Rights Reserved. World of Software.
    Welcome Back!

    Sign in to your account

    Lost your password?