By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
World of SoftwareWorld of SoftwareWorld of Software
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Search
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
Reading: Why Pigeons at Rest Are at the Center of Complexity Theory
Share
Sign In
Notification Show More
Font ResizerAa
World of SoftwareWorld of Software
Font ResizerAa
  • Software
  • Mobile
  • Computing
  • Gadget
  • Gaming
  • Videos
Search
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Have an existing account? Sign In
Follow US
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
World of Software > Gadget > Why Pigeons at Rest Are at the Center of Complexity Theory
Gadget

Why Pigeons at Rest Are at the Center of Complexity Theory

News Room
Last updated: 2025/05/04 at 7:39 AM
News Room Published 4 May 2025
Share
SHARE

By January 2020, Papadimitriou had been thinking about the pigeonhole principle for 30 years. So he was surprised when a playful conversation with a frequent collaborator led them to a simple twist on the principle that they’d never considered: What if there are fewer pigeons than holes? In that case, any arrangement of pigeons must leave some empty holes. Again, it seems obvious. But does inverting the pigeonhole principle have any interesting mathematical consequences?

It may sound as though this “empty-pigeonhole” principle is just the original one by another name. But it’s not, and its subtly different character has made it a new and fruitful tool for classifying computational problems.

To understand the empty-pigeonhole principle, let’s go back to the bank-card example, transposed from a football stadium to a concert hall with 3,000 seats—a smaller number than the total possible four-digit PINs. The empty-pigeonhole principle dictates that some possible PINs aren’t represented at all. If you want to find one of these missing PINs, though, there doesn’t seem to be any better way than simply asking each person their PIN. So far, the empty-pigeonhole principle is just like its more famous counterpart.

The difference lies in the difficulty of checking solutions. Imagine that someone says they’ve found two specific people in the football stadium who have the same PIN. In this case, corresponding to the original pigeonhole scenario, there’s a simple way to verify that claim: Just check with the two people in question. But in the concert hall case, imagine that someone asserts that no person has a PIN of 5926. Here, it’s impossible to verify without asking everyone in the audience what their PIN is. That makes the empty-pigeonhole principle much more vexing for complexity theorists.

Two months after Papadimitriou began thinking about the empty-pigeonhole principle, he brought it up in a conversation with a prospective graduate student. He remembers it vividly, because it turned out to be his last in-person conversation with anyone before the Covid-19 lockdowns. Cooped up at home over the following months, he wrestled with the problem’s implications for complexity theory. Eventually he and his colleagues published a paper about search problems that are guaranteed to have solutions because of the empty-pigeonhole principle. They were especially interested in problems where pigeonholes are abundant—that is, where they far outnumber pigeons. In keeping with a tradition of unwieldy acronyms in complexity theory, they dubbed this class of problems APEPP, for “abundant polynomial empty-pigeonhole principle.”

One of the problems in this class was inspired by a famous 70-year-old proof by the pioneering computer scientist Claude Shannon. Shannon proved that most computational problems must be inherently hard to solve, using an argument that relied on the empty-pigeonhole principle (though he didn’t call it that). Yet for decades, computer scientists have tried and failed to prove that specific problems are truly hard. Like missing bank-card PINs, hard problems must be out there, even if we can’t identify them.

Historically, researchers haven’t thought about the process of looking for hard problems as a search problem that could itself be analyzed mathematically. Papadimitriou’s approach, which grouped that process with other search problems connected to the empty-pigeonhole principle, had a self-referential flavor characteristic of much recent work in complexity theory—it offered a new way to reason about the difficulty of proving computational difficulty.

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Share This Article
Facebook Twitter Email Print
Share
What do you think?
Love0
Sad0
Happy0
Sleepy0
Angry0
Dead0
Wink0
Previous Article Daniela de Mesquita Feijão: Pioneering Palliative Care Solutions for the Elderly
Next Article All the AI news of the week: Hands-on with Meta’s AI app, ChatGPT and and leaderboard drama
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

248.1k Like
69.1k Follow
134k Pin
54.3k Follow

Latest News

If you’ve been waiting for the M5 MacBooks, we have bad news
News
AI coding tools made some experienced software ingredients less productive in a recent study
News
My mother-in-law ‘drained’ $1m in a week – ‘heartbreaking’ truth experts gave us
News
Indie App Spotlight: ‘Timescape’ is a big-picture calendar for year-round planning – 9to5Mac
News

You Might also Like

Gadget

Cultural Diplomacy in Action: India’s Grand Celebrations Capture Global Imagination

10 Min Read
Gadget

ChatGPT Helped Me Rebrand My Small Business – Customers Noticed in a Week

6 Min Read
Gadget

Why a Ford Transit Conversion Van is the Perfect Start for Your Van Life Adventure

10 Min Read
Gadget

The Timekettle T1 Is an Adept Global Translator That’ll Work Even Offline

4 Min Read
//

World of Software is your one-stop website for the latest tech news and updates, follow us now to get the news that matters to you.

Quick Link

  • Privacy Policy
  • Terms of use
  • Advertise
  • Contact

Topics

  • Computing
  • Software
  • Press Release
  • Trending

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

World of SoftwareWorld of Software
Follow US
Copyright © All Rights Reserved. World of Software.
Welcome Back!

Sign in to your account

Lost your password?