By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
World of SoftwareWorld of SoftwareWorld of Software
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Search
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
Reading: A Giant Planet and a Small Star Are Shaking Up Conventional Cosmological Theory
Share
Sign In
Notification Show More
Font ResizerAa
World of SoftwareWorld of Software
Font ResizerAa
  • Software
  • Mobile
  • Computing
  • Gadget
  • Gaming
  • Videos
Search
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Have an existing account? Sign In
Follow US
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
World of Software > Gadget > A Giant Planet and a Small Star Are Shaking Up Conventional Cosmological Theory
Gadget

A Giant Planet and a Small Star Are Shaking Up Conventional Cosmological Theory

News Room
Last updated: 2025/07/09 at 7:08 AM
News Room Published 9 July 2025
Share
SHARE

Many of the stars in the Milky Way galaxy are small, dim red dwarfs—stars much smaller than the sun in both size and mass. TOI-6894, located far away from Earth, is one of them.

Astronomers previously thought a star like this could not have large planets circulating it, because its mass is only about 20 percent of the sun, meaning its planetary system—generated from materials surrounding the star—would not have contained enough mass to form a giant body like Saturn or Jupiter.

But when observing TOI-6894, an international research team detected a clear transit signal—a temporary decrease in a star’s brightness caused by a planet passing across it. This newly discovered planet, named TOI-6894b, blocks 17 percent of the star’s light, indicating the planet is fairly large. The signal was picked up by the Transiting Exoplanet Survey Satellite (TESS), an observation instrument launched by NASA to hunt for planets orbiting stars outside of our solar system.

This makes TOI-6894 “the lowest mass star known to date to host such a planet,” said Edward Bryant, Astrophysics Prize Fellow at the University of Warwick, in a press statement. The finding appears to upend conventional theory on how planets are formed. “This discovery will be a cornerstone for understanding the extremes of giant planet formation,” Bryant said.

Astronomers at University College London and the University of Warwick, as part of a global collaboration with partners in Chile, the US, and Europe, trawled through the data of about 91,000 red dwarf stars observed by TESS before discovering the planet TOI-6894b. After that, the nature of TOI-6894b was clarified by additional observations made with other telescopes. According to these, TOI-6894b’s radius is slightly larger than Saturn’s, but its mass is only about half that of the ringed giant. Its density is extremely light at only 0.33 g/cm³, indicating that it is an expanding gas planet.

TOI-6894 is nearly 40 percent smaller than the previous record for the smallest star with a planet of this size. This fact poses a serious contradiction to conventional theories of planet formation.

The widely accepted planetary formation model, the “core-accumulation theory,” proposes that a ring of dust and rocks—known as protoplanetary disk—forms around a star, and that materials in this disk then gather together to form the cores of planets. After starting out this way, larger gas planets then accrete gases around their cores to become gigantic. But if the mass of the star is small, the mass of its protoplanetary disk tends to be small as well. In such a scenario, the nucleus necessary for the formation of a giant gas planet will not grow.

Based on this theory, it is estimated that more than 120 times more solid matter than that of the Earth would be required to form TOI-6894b. However, the observed disk surrounding the star TOI-6894 contains only 58 times the mass of the Earth at most. This raises the possibility of an alternative planet-formation mechanism existing.

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Share This Article
Facebook Twitter Email Print
Share
What do you think?
Love0
Sad0
Happy0
Sleepy0
Angry0
Dead0
Wink0
Previous Article Don’t Let Your Staff Download These Browser Extensions
Next Article What Sequent Calculus Teaches Us About Computation | HackerNoon
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

248.1k Like
69.1k Follow
134k Pin
54.3k Follow

Latest News

Archimedes – Going All Out on the Eureka Can | HackerNoon
Computing
We may finally know what happened to the water on Mars
News
Dreaming of a Dyson? Here Are 6 of Our Favorite Dyson Vacuums, Fans, and Hair Tools on Sale for Prime Day
Gadget
OpenAI set to release Chromium-based browser built around AI agent – News
News

You Might also Like

Gadget

Dreaming of a Dyson? Here Are 6 of Our Favorite Dyson Vacuums, Fans, and Hair Tools on Sale for Prime Day

4 Min Read
Gadget

The Nespresso Creatista Plus is almost half price this Prime Day

2 Min Read
Gadget

Sony’s Brand New Flagship Headphones Are on Sale for Prime Day

3 Min Read
Gadget

This mini-sized JBL outdoor speaker has a big Prime Day price cut

3 Min Read
//

World of Software is your one-stop website for the latest tech news and updates, follow us now to get the news that matters to you.

Quick Link

  • Privacy Policy
  • Terms of use
  • Advertise
  • Contact

Topics

  • Computing
  • Software
  • Press Release
  • Trending

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

World of SoftwareWorld of Software
Follow US
Copyright © All Rights Reserved. World of Software.
Welcome Back!

Sign in to your account

Lost your password?