By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
World of SoftwareWorld of SoftwareWorld of Software
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Search
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
Reading: Are We on the Verge of a Breakthrough in Understanding Planet Formation? | HackerNoon
Share
Sign In
Notification Show More
Font ResizerAa
World of SoftwareWorld of Software
Font ResizerAa
  • Software
  • Mobile
  • Computing
  • Gadget
  • Gaming
  • Videos
Search
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Have an existing account? Sign In
Follow US
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
World of Software > Computing > Are We on the Verge of a Breakthrough in Understanding Planet Formation? | HackerNoon
Computing

Are We on the Verge of a Breakthrough in Understanding Planet Formation? | HackerNoon

News Room
Last updated: 2025/10/06 at 9:14 PM
News Room Published 6 October 2025
Share
SHARE

Table of Links

Abstract and 1 Introduction

  1. Sample selection and properties

  2. Results

  3. Discussion

  4. Concluding remarks and References

    Appendix A: Sample selection

    Appendix B: Properties of the TOIs in this work

    Appendix C: Pre-MS estimates

5. Concluding remarks

The lack of a solid observational background on exoplanets around intermediate-mass stars (analogous to the background present around low-mass stars) affects our knowledge of planet formation in general and of hot Jupiters in particular. In this work we have analysed such type of planets, selected from a combination of TESS and Gaia data. Our analysis has focused on the physical limit of their innermost planetary orbits, regardless of the ongoing debate on the frequency of hot Jupiters around intermediate-mass stars (e.g., Sebastian et al. 2022, and references therein). In principle, our analysis is also independent of observational developments that would eventually lead to larger samples of intermediate-mass stars hosting smaller exoplanets at longer orbital radii. We provide tentative evidence to support the notion that hot Jupiters’ orbits around intermediate-mass stars are mostly determined by the protoplanetary disk gas-truncation radius – and not by the dust-destruction radius. Although gravitational instabilities may play a role in the formation of long-period giant planets around such stars, we have suggested that the origin of hot Jupiters is probably similar than it is for lower-mass sources. This is based on a combination between the core-accretion paradigm and migration up to the inner gas edge. Finally, the comparison between low- and intermediate-mass stars suggests that the gas barrier indeed fixes the innermost planetary orbits for the whole stellar mass regime. Future tests of the previous hypothesis require larger samples of intermediate-mass stars with hot Jupiters. Two examples of such types of tests are outlined below.

First, the size of the magnetosphere is limited by the disk co-rotation radius, which is smaller for larger stellar rotational velocities (Shu et al. 1994). Thus, if the magnetosphere controls the innermost planetary orbits these should be smaller for fastrotating stars (see, e.g., the related discussion in Lee & Chiang 2017). This is in agreement with the recent finding, showing that shorter orbital periods are observed in more massive stars with shorter rotational periods, at least considering FGK spectral types (García et al. 2023). However, it is hard to make a conclusive test only based on low-mass stars, given their narrow range of small projected rotational velocities. In contrast, velocities of intermediate-mass stars span from a few to a few hundred km/s, making them ideal for such a test. Gaia-based projected rotational velocities are presently only available for a dozen of all the sources analyzed in this work. Additional velocity estimates will be helpful in carrying out this task.

Second, that magnetospheres act as gas barriers ceasing inward migration immediately implies that if those are absent, then the probability that planets are swallowed by their host stars increases (Nelson et al. 2000). Indirect evidence of planets swallowed by their hosts have been provided only for a few solar-type stars (e.g., Israelian et al. 2001; De et al. 2023, and references therein). Notably, magnetospheres are likely to be lacking in most Herbig stars with masses & 3-4 M⊙ (Wichittanakom et al. 2020; Vioque et al. 2022), for which the gas disk may reach the central source trough a boundary layer (Mendigutía 2020, and references therein). Thus, if magnetospheres are the ultimate barrier preventing unlimited planet migration, then the planet engulfment scenario would be most efficient for stellar masses of > 3-4 M⊙. These stars may show a deficit of hot Jupiters, as compared to the case of less massive stars.

Acknowledgements. The authors acknowledge the anonymous referee, whose suggestions have served to improve the manuscript. IM’s research is funded by grants PID2022-138366NA-I00, by the Spanish Ministry of Science and Innovation/State Agency of Research MCIN/AEI/10.13039/501100011033 and by the European Union, and by a Ramón y Cajal fellowship RyC2019-026992-I. J.L.-B. is partly funded by the Spanish MCIN/AEI/10.13039/501100011033 and NextGenerationEU/PRTR grants PID2019-107061GB-C61 and CNS2023- 144309, and by the Ramón y Cajal fellowship RYC2021-031640-I. BM is supported by grant MCIN/AEI/PID2021-127289-NB-I00. We acknowledge the use of public TOI Release data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. Funding for the TESS mission is provided by NASA’s Science Mission directorate. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

References

Baruteau, C., Meru, F., & Paardekooper, S.-J. 2011, MNRAS, 416, 1971

Batygin, K., Adams, F. C., & Becker, J. 2023, ApJ, 951, L19

Benkendorff, L., Flammini Dotti, F., Stock, K., Cai, M. X., & Spurzem, R. 2024, MNRAS, 528, 2834

Borucki, W. J., Koch, D., Basri, G., et al. 2010, Science, 327, 977

Boss, A. P. 1998, ApJ, 503, 923

Bouvier, J., Alencar, S. H. P., Harries, T. J., Johns-Krull, C. M., & Romanova, M. M. 2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil, 479

Brittain, S. D., Kamp, I., Meeus, G., Oudmaijer, R. D., & Waters, L. B. F. M. 2023, Space Sci. Rev., 219, 7

Cantiello, M. & Braithwaite, J. 2019, ApJ, 883, 106

Creevey, O. L., Sordo, R., Pailler, F., et al. 2023, A&A, 674, A26

De, K., MacLeod, M., Karambelkar, V., et al. 2023, Nature, 617, 55

Dong, R., Najita, J. R., & Brittain, S. 2018, ApJ, 862, 103

Drazkowska, J., Bitsch, B., Lambrechts, M., et al. 2023, in Astronomical Society of the Pacific Conference Series, Vol. 534, Protostars and Planets VII, ed. S. Inutsuka, Y. Aikawa, T. Muto, K. Tomida, & M. Tamura, 717

Flock, M., Turner, N. J., Mulders, G. D., et al. 2019, A&A, 630, A147

Fouesneau, M., Frémat, Y., Andrae, R., et al. 2023, A&A, 674, A28

Gaia Collaboration, Arenou, F., Babusiaux, C., et al. 2023a, A&A, 674, A34

Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016, A&A, 595, A1

Gaia Collaboration, Vallenari, A., Brown, A. G. A., et al. 2023b, A&A, 674, A1

Gammie, C. F. 2001, ApJ, 553, 174

García, R. A., Gourvès, C., Santos, A. R. G., et al. 2023, A&A, 679, L12

Giacalone, S., Dressing, C. D., Jensen, E. L. N., et al. 2021, AJ, 161, 24

Gravity Collaboration, Wojtczak, J. A., Labadie, L., et al. 2023, A&A, 669, A59

Guerrero, N. M., Seager, S., Huang, C. X., et al. 2021, ApJS, 254, 39

Hussain, G. A. J. & Alecian, E. 2014, in Magnetic Fields throughout Stellar Evolution, ed. P. Petit, M. Jardine, & H. C. Spruit, Vol. 302, 25–37

Israelian, G., Santos, N. C., Mayor, M., & Rebolo, R. 2001, Nature, 411, 163

Kley, W. & Nelson, R. P. 2012, ARA&A, 50, 211

Koenigl, A. 1991, ApJ, 370, L39

Koumpia, E., de Wit, W. J., Oudmaijer, R. D., et al. 2021, A&A, 654, A109

Kunimoto, M. & Matthews, J. M. 2020, AJ, 159, 248

Lee, E. J. & Chiang, E. 2017, ApJ, 842, 40

Lillo-Box, J., Morales-Calderón, M., Barrado, D., et al. 2024, arXiv e-prints, arXiv:2404.06316

Lin, D. N. C., Bodenheimer, P., & Richardson, D. C. 1996, Nature, 380, 606

Marcos-Arenal, P., Mendigutía, I., Koumpia, E., et al. 2021, A&A, 652, A68

Mayor, M. & Queloz, D. 1995, Nature, 378, 355

Mendigutía, I. 2020, Galaxies, 8, 39

Mendigutía, I., Solano, E., Vioque, M., et al. 2022, A&A, 664, A66

Michael, S., Durisen, R. H., & Boley, A. C. 2011, ApJ, 737, L42

Monnier, J. D. & Millan-Gabet, R. 2002, ApJ, 579, 694

Mulders, G. D., Pascucci, I., & Apai, D. 2015, ApJ, 798, 112

Mulders, G. D., Pascucci, I., Ciesla, F. J., & Fernandes, R. B. 2021, ApJ, 920, 66

Nelson, R. P., Papaloizou, J. C. B., Masset, F., & Kley, W. 2000, MNRAS, 318, 18

Pinte, C., Ménard, F., Berger, J. P., Benisty, M., & Malbet, F. 2008, ApJ, 673, L63

Ribas, Á., Bouy, H., & Merín, B. 2015, A&A, 576, A52

Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2015, Journal of Astronomical Telescopes, Instruments, and Systems, 1, 014003

Romanova, M. M., Lii, P. S., Koldoba, A. V., et al. 2019, MNRAS, 485, 2666

Salaris, M. & Cassisi, S. 2006, Evolution of Stars and Stellar Populations

Sebastian, D., Guenther, E. W., Deleuil, M., et al. 2022, MNRAS, 516, 636

Shu, F., Najita, J., Ostriker, E., et al. 1994, ApJ, 429, 781

Siess, L., Dufour, E., & Forestini, M. 2000, A&A, 358, 593

Simon, T., Ayres, T. R., Redfield, S., & Linsky, J. L. 2002, ApJ, 579, 800

Stassun, K. G., Feiden, G. A., & Torres, G. 2014, New A Rev., 60, 1

Tarrants, T. & Mendes, E. 2023, arXiv e-prints, arXiv:2310.12380

Tuthill, P. G., Monnier, J. D., & Danchi, W. C. 2001, Nature, 409, 1012

Vioque, M., Oudmaijer, R. D., Wichittanakom, C., et al. 2022, ApJ, 930, 39

Wichittanakom, C., Oudmaijer, R. D., Fairlamb, J. R., et al. 2020, MNRAS, 493, 234

Yee, S. W. & Winn, J. N. 2023, ApJ, 949, L21

Zhou, G., Huang, C. X., Bakos, G. Á., et al. 2019, AJ, 158, 141

Zhu, Z., Stone, J. M., & Calvet, N. 2024, MNRAS, 528, 2883

:::info
Authors:

(1) I. Mendigutía, Centro de Astrobiología (CAB), CSIC-INTA, Camino Bajo del Castillo s/n, 28692, Villanueva de la Cañada, Madrid, Spain;

(2) J. Lillo-Box, Centro de Astrobiología (CAB), CSIC-INTA, Camino Bajo del Castillo s/n, 28692, Villanueva de la Cañada, Madrid, Spain;

(3) M. Vioque, European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München, Germany and Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura, Santiago 763-0355, Chile;

(4) J. Maldonado, INAF – Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo, Italy;

(8) B. Montesinos, Centro de Astrobiología (CAB), CSIC-INTA, Camino Bajo del Castillo s/n, 28692, Villanueva de la Cañada, Madrid, Spain;

(6) N. Huélamo, Centro de Astrobiología (CAB), CSIC-INTA, Camino Bajo del Castillo s/n, 28692, Villanueva de la Cañada, Madrid, Spain;

(7) J. Wang, Departamento de Física Teórica, Módulo 15, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

:::


:::info
This paper is available on arxiv under CC BY-SA 4.0 DEED license.

:::

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Share This Article
Facebook Twitter Email Print
Share
What do you think?
Love0
Sad0
Happy0
Sleepy0
Angry0
Dead0
Wink0
Previous Article Everything New in iOS 26.1 Beta 2
Next Article SwitchBot’s new tracker could help save you from threats by sending you a ghost call
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

248.1k Like
69.1k Follow
134k Pin
54.3k Follow

Latest News

Starlink Could Fail If It’s Adopted Nationally – Here’s Why – BGR
News
The Hack to Buy Expensive Stocks at a Fraction of the Price | HackerNoon
Computing
How to Choose the Right Mortgage Lender for Your Home Purchase
Gadget
Apple needs to stop using confusing language about iPhone cameras
News

You Might also Like

Computing

The Hack to Buy Expensive Stocks at a Fraction of the Price | HackerNoon

10 Min Read
Computing

PARTIAL JUDGE LINEUP: GLOBAL INVESTORS AND TECH VISIONARIES TO EVALUATE THE HNSE AHB 2025 · TechNode

2 Min Read
Computing

Generative AI Is Transforming the Advertising Industry – A Guide for Product Managers | HackerNoon

1 Min Read
Computing

Huawei to debut HarmonyOS games at ChinaJoy 2025 · TechNode

1 Min Read
//

World of Software is your one-stop website for the latest tech news and updates, follow us now to get the news that matters to you.

Quick Link

  • Privacy Policy
  • Terms of use
  • Advertise
  • Contact

Topics

  • Computing
  • Software
  • Press Release
  • Trending

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

World of SoftwareWorld of Software
Follow US
Copyright © All Rights Reserved. World of Software.
Welcome Back!

Sign in to your account

Lost your password?