By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
World of SoftwareWorld of SoftwareWorld of Software
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Search
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
Reading: Diffusion Models Are Real-Time Game Engines | HackerNoon
Share
Sign In
Notification Show More
Font ResizerAa
World of SoftwareWorld of Software
Font ResizerAa
  • Software
  • Mobile
  • Computing
  • Gadget
  • Gaming
  • Videos
Search
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Have an existing account? Sign In
Follow US
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
World of Software > Computing > Diffusion Models Are Real-Time Game Engines | HackerNoon
Computing

Diffusion Models Are Real-Time Game Engines | HackerNoon

News Room
Last updated: 2026/01/27 at 8:14 PM
News Room Published 27 January 2026
Share
Diffusion Models Are Real-Time Game Engines | HackerNoon
SHARE

:::info
Authors:

  1. Dani Valevski
  2. Yaniv Leviathan
  3. Moab Arar
  4. Shlomi Fruchter

:::

Table of Links

ABSTRACT

1 INTRODUCTION

2 INTERACTIVE WORLD SIMULATION

3 GAMENGEN

3.1 DATA COLLECTION VIA AGENT PLAY

3.2 TRAINING THE GENERATIVE DIFFUSION MODEL

4 EXPERIMENTAL SETUP

4.1 AGENT TRAINING

4.2 GENERATIVE MODEL TRAINING

5 RESULTS

5.1 SIMULATION QUALITY

5.2 ABLATIONS

6 RELATED WORK

7 DISCUSSION, ACKNOWLEDGEMENTS AND REFERENCES

ABSTRACT

We present GameNGen, the first game engine powered entirely by a neural model that also enables real-time interaction with a complex environment over long trajectories at high quality. When trained on the classic game DOOM, GameNGen extracts gameplay and uses it to generate a playable environment that can interactively simulate new trajectories. GameNGen runs at 20 frames per second on a single TPU and remains stable over extended multi-minute play sessions. Next frame prediction achieves a PSNR of 29.4, comparable to lossy JPEG compression. Human raters are only slightly better than random chance at distinguishing short clips of the game from clips of the simulation, even after 5 minutes of autoregressive generation. GameNGen is trained in two phases: (1) an RL-agent learns to play the game and the training sessions are recorded, and (2) a diffusion model is trained to produce the next frame, conditioned on the sequence of past frames and actions. Conditioning augmentations help ensure stable auto-regressive generation over long trajectories, and decoder fine-tuning improves the fidelity of visual details and text.

1 INTRODUCTION

Computer games are manually crafted software systems centered around the following game loop: (1) gather user inputs, (2) update the game state, and (3) render it to screen pixels. This game loop, running at high frame rates, creates the illusion of an interactive virtual world for the player. Such game loops are classically run on standard computers, and while there have been many amazing attempts at running games on bespoke hardware (e.g. the iconic game DOOM has been run on kitchen appliances such as a toaster and a microwave, a treadmill, a camera, an iPod, and within the game of Minecraft, to name just a few examples1 ), in all of these cases the hardware is still emulating the manually written game software as-is. Furthermore, while vastly different game engines exist, the game state updates and rendering logic in all are composed of a set of manual rules, programmed or configured by hand.

In recent years, generative models made significant progress in producing images and videos conditioned on multi-modal inputs, such as text or images. At the forefront of this wave, diffusion models became the de-facto standard in media (i.e. non-language) generation, with works like DallE (Ramesh et al., 2022), Stable Diffusion (Rombach et al., 2022) and Sora (Brooks et al., 2024). At a glance, simulating the interactive worlds of video games may seem similar to video generation. However, interactive world simulation is more than just very fast video generation. The requirement to condition on a stream of input actions that is only available throughout the generation breaks some assumptions of existing diffusion model architectures. Notably, it requires generating frames autoregressively which tends to be unstable and leads to sampling divergence (see section 3.2.1). Several important works (Ha & Schmidhuber, 2018; Kim et al., 2020; Bruce et al., 2024) (see Section 6) simulate interactive video games with neural models. Nevertheless, most of these approaches are limited in respect to the complexity of the simulated games, simulation speed, stability over long time periods, or visual quality (see Figure 2). It is therefore natural to ask:

Can a neural model running in real-time simulate a complex game at high quality?

In this work we demonstrate that the answer is yes. Specifically, we show that a complex video game, the iconic game DOOM, can be run on a neural network (an augmented version of the open Stable Diffusion v1.4 (Rombach et al., 2022)), in real-time, while achieving a visual quality comparable to that of the original game. While not an exact simulation, the neural model is able to perform complex game state updates, such as tallying health and ammo, attacking enemies, damaging objects, opening doors, and persist the game state over long trajectories. GameNGen answers one of the important questions on the road towards a new paradigm for game engines, one where games are automatically generated, similarly to how images and videos are generated by neural models in recent years. Key questions remain, such as how these neural game engines would be trained and how games would be effectively created in the first place, including how to best leverage human inputs. We are nevertheless extremely excited for the possibilities of this new paradigm.

Figure 2: GameNGen compared to prior state-of-the-art simulations of DOOM

:::info
This paper is available on arxiv under CC by 4.0 Deed (Attribution 4.0 International) license.

:::

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Share This Article
Facebook Twitter Email Print
Share
What do you think?
Love0
Sad0
Happy0
Sleepy0
Angry0
Dead0
Wink0
Previous Article Razer’s new web tool removes the worst part about owning PC peripherals Razer’s new web tool removes the worst part about owning PC peripherals
Next Article How Local Service Businesses Are Scaling Operations in Competitive Urban Markets How Local Service Businesses Are Scaling Operations in Competitive Urban Markets
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

248.1k Like
69.1k Follow
134k Pin
54.3k Follow

Latest News

We Simplified Onboarding and Conversions Jumped 25% | HackerNoon
We Simplified Onboarding and Conversions Jumped 25% | HackerNoon
Computing
Today's NYT Connections Hints, Answers for Jan. 28 #962
Today's NYT Connections Hints, Answers for Jan. 28 #962
News
What you should know about the owners of US TikTok |  News
What you should know about the owners of US TikTok | News
News
TSMC begins construction of Kumamoto second fab with .9 billion investment · TechNode
TSMC begins construction of Kumamoto second fab with $13.9 billion investment · TechNode
Computing

You Might also Like

We Simplified Onboarding and Conversions Jumped 25% | HackerNoon
Computing

We Simplified Onboarding and Conversions Jumped 25% | HackerNoon

11 Min Read
TSMC begins construction of Kumamoto second fab with .9 billion investment · TechNode
Computing

TSMC begins construction of Kumamoto second fab with $13.9 billion investment · TechNode

1 Min Read
Claude Book: A Multi-Agent Framework for Writing Novels with Claude Code | HackerNoon
Computing

Claude Book: A Multi-Agent Framework for Writing Novels with Claude Code | HackerNoon

0 Min Read
DJI Pocket 4 reportedly enters mass production with new chassis design leaked · TechNode
Computing

DJI Pocket 4 reportedly enters mass production with new chassis design leaked · TechNode

1 Min Read
//

World of Software is your one-stop website for the latest tech news and updates, follow us now to get the news that matters to you.

Quick Link

  • Privacy Policy
  • Terms of use
  • Advertise
  • Contact

Topics

  • Computing
  • Software
  • Press Release
  • Trending

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

World of SoftwareWorld of Software
Follow US
Copyright © All Rights Reserved. World of Software.
Welcome Back!

Sign in to your account

Lost your password?