By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
World of SoftwareWorld of SoftwareWorld of Software
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Search
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
Reading: Implementation Details of Tree-Diffusion: Architecture and Training for Inverse Graphics | HackerNoon
Share
Sign In
Notification Show More
Font ResizerAa
World of SoftwareWorld of Software
Font ResizerAa
  • Software
  • Mobile
  • Computing
  • Gadget
  • Gaming
  • Videos
Search
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Have an existing account? Sign In
Follow US
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
World of Software > Computing > Implementation Details of Tree-Diffusion: Architecture and Training for Inverse Graphics | HackerNoon
Computing

Implementation Details of Tree-Diffusion: Architecture and Training for Inverse Graphics | HackerNoon

News Room
Last updated: 2025/09/27 at 1:42 PM
News Room Published 27 September 2025
Share
SHARE

Table of Links

Abstract and 1. Introduction

  1. Background & Related Work

  2. Method

    3.1 Sampling Small Mutations

    3.2 Policy

    3.3 Value Network & Search

    3.4 Architecture

  3. Experiments

    4.1 Environments

    4.2 Baselines

    4.3 Ablations

  4. Conclusion, Acknowledgments and Disclosure of Funding, and References

Appendix

A. Mutation Algorithm

B. Context-Free Grammars

C. Sketch Simulation

D. Complexity Filtering

E. Tree Path Algorithm

F. Implementation Details

F Implementation Details

We implement our architecture in PyTorch [1]. For our image encoder we use the NF-ResNet26 [4] implementation from the open-sourced library by Wightman [38]. Images are of size 128 × 128 × 1 for CSG2D and 128 × 128 × 3 for TinySVG. We pass the current and target images as a stack of image planes into the image encoder. Additionally, we provide the absolute difference between current and target image as additional planes.

For the autoregressive (CSGNet) baseline, we trained the model to output ground-truth programs from target images, and provided a blank current image. For tree diffusion methods, we initialized the search and rollouts using the output of the autoregressive model, which counted as a single node expansion. For our re-implementation of Ellis et al. [11], we flattened the CSG2D tree into shapes being added from left to right. We then randomly sampled a position in this shape array, compiled the output up until the sampled position, and trained the model to output the next shape using constrained grammar decoding.

This is a departure from the pointer network architecture in their work. We think that the lack of prior shaping, departure from a graphics specific pointer network, and not using reinforcement learning to fine-tune leads to a performance difference between their results and our re-implementation. We note that our method does not require any of these additional features, and thus the comparison is fairer. For tree diffusion search, we used a beam size of 64, with a maximum node expansion budget of 5000 nodes.

:::info
Authors:

(1) Shreyas Kapur, University of California, Berkeley ([email protected]);

(2) Erik Jenner, University of California, Berkeley ([email protected]);

(3) Stuart Russell, University of California, Berkeley ([email protected]).

:::


:::info
This paper is available on arxiv under CC BY-SA 4.0 DEED license.

:::

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Share This Article
Facebook Twitter Email Print
Share
What do you think?
Love0
Sad0
Happy0
Sleepy0
Angry0
Dead0
Wink0
Previous Article Here’s the latest progress on how Google Messages @mentions are going to work
Next Article Lawsuit over Apple Intelligence Siri delays is nitpicking, Apple argues
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

248.1k Like
69.1k Follow
134k Pin
54.3k Follow

Latest News

DJI loses lawsuit against Pentagon, leaving its popular drones in peril
News
How to Make a Life Plan (with Templates!) |
Computing
Beware coworkers who produce AI-generated ‘workslop’ | News
News
Starlink Internet Speeds Are About To Get A Big Upgrade – Here’s How – BGR
News

You Might also Like

Computing

How to Make a Life Plan (with Templates!) |

23 Min Read
Computing

Anchor Protocol and the Curious Case of Staking Fees as “Stable” Interest | HackerNoon

6 Min Read
Computing

TikTok algorithm head Chen Zhijie set to leave ByteDance, ventures into AI Coding · TechNode

1 Min Read
Computing

I switched from pivot tables to GROUPBY formulas and my analysis updates itself

8 Min Read
//

World of Software is your one-stop website for the latest tech news and updates, follow us now to get the news that matters to you.

Quick Link

  • Privacy Policy
  • Terms of use
  • Advertise
  • Contact

Topics

  • Computing
  • Software
  • Press Release
  • Trending

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

World of SoftwareWorld of Software
Follow US
Copyright © All Rights Reserved. World of Software.
Welcome Back!

Sign in to your account

Lost your password?