By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
World of SoftwareWorld of SoftwareWorld of Software
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Search
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
Reading: The Integration of Vision-LLMs into AD Systems: Capabilities and Challenges | HackerNoon
Share
Sign In
Notification Show More
Font ResizerAa
World of SoftwareWorld of Software
Font ResizerAa
  • Software
  • Mobile
  • Computing
  • Gadget
  • Gaming
  • Videos
Search
  • News
  • Software
  • Mobile
  • Computing
  • Gaming
  • Videos
  • More
    • Gadget
    • Web Stories
    • Trending
    • Press Release
Have an existing account? Sign In
Follow US
  • Privacy
  • Terms
  • Advertise
  • Contact
Copyright © All Rights Reserved. World of Software.
World of Software > Computing > The Integration of Vision-LLMs into AD Systems: Capabilities and Challenges | HackerNoon
Computing

The Integration of Vision-LLMs into AD Systems: Capabilities and Challenges | HackerNoon

News Room
Last updated: 2025/09/27 at 6:59 PM
News Room Published 27 September 2025
Share
SHARE

Table of Links

Abstract and 1. Introduction

  1. Related Work

    2.1 Vision-LLMs

    2.2 Transferable Adversarial Attacks

  2. Preliminaries

    3.1 Revisiting Auto-Regressive Vision-LLMs

    3.2 Typographic Attacks in Vision-LLMs-based AD Systems

  3. Methodology

    4.1 Auto-Generation of Typographic Attack

    4.2 Augmentations of Typographic Attack

    4.3 Realizations of Typographic Attacks

  4. Experiments

  5. Conclusion and References

2 Related Work

2.1 Vision-LLMs

Having demonstrated the proficiency of Large Language Models (LLMs) in reasoning across various natural language benchmarks, researchers have extended LLMs with visual encoders to support multimodal understanding. This integration has given rise to various forms of Vision-LLMs, capable of reasoning based on the composition of visual and language inputs.

Vision-LLMs Pre-training. The interconnection between LLMs and pre-trained vision models involves the individual pre-training of unimodal encoders on their respective domains, followed by large-scale vision-language joint training [17, 18, 19, 20, 2, 1]. Through an interleaved visual language corpus (e.g., MMC4 [21] and M3W [22]), auto-regressive models learn to process images by converting them into visual tokens, combine these with textual tokens, and input them into LLMs. Visual inputs are treated as a foreign language, enhancing traditional text-only LLMs by enabling visual understanding while retaining their language capabilities. Hence, a straightforward pre-training strategy may not be designed to handle cases where input text is significantly more aligned with visual texts in an image than with the visual context of that image.

Vision-LLMs in AD Systems. Vision-LLMs have proven useful for perception, planning, reasoning, and control in autonomous driving (AD) systems [6, 7, 9, 5]. For example, existing works have quantitatively benchmarked the linguistic capabilities of Vision-LLMs in terms of their trustworthiness in explaining the decision-making processes of AD [7]. Others have explored the use of VisionLLMs for vehicular maneuvering [8, 5], and [6] even validated an approach in controlled physical environments. Because AD systems involve safety-critical situations, comprehensive analyses of their vulnerabilities are crucial for reliable deployment and inference. However, proposed adoptions of Vision-LLMs into AD have been straightforward, which means existing issues (e.g., vulnerabilities against typographic attacks) in such models are likely present without proper countermeasures.

:::info
Authors:

(1) Nhat Chung, CFAR and IHPC, A*STAR, Singapore and VNU-HCM, Vietnam;

(2) Sensen Gao, CFAR and IHPC, A*STAR, Singapore and Nankai University, China;

(3) Tuan-Anh Vu, CFAR and IHPC, A*STAR, Singapore and HKUST, HKSAR;

(4) Jie Zhang, Nanyang Technological University, Singapore;

(5) Aishan Liu, Beihang University, China;

(6) Yun Lin, Shanghai Jiao Tong University, China;

(7) Jin Song Dong, National University of Singapore, Singapore;

(8) Qing Guo, CFAR and IHPC, A*STAR, Singapore and National University of Singapore, Singapore.

:::


:::info
This paper is available on arxiv under CC BY 4.0 DEED license.

:::

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Share This Article
Facebook Twitter Email Print
Share
What do you think?
Love0
Sad0
Happy0
Sleepy0
Angry0
Dead0
Wink0
Previous Article These 6 horror movies get scarier the longer you think about them
Next Article How AI browsers open the door to new scams
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

248.1k Like
69.1k Follow
134k Pin
54.3k Follow

Latest News

Today's NYT Connections: Sports Edition Hints, Answers for Sept. 28 #370
News
How to Make Money on Pinterest: 7 Tips for 2025
Computing
Apple Testing LLM Siri With ChatGPT-Like App
News
Time Is Running Out: Rate Your Antivirus or Security Suite
News

You Might also Like

Computing

How to Make Money on Pinterest: 7 Tips for 2025

2 Min Read
Computing

Redmi launches Note 14 Pro+ featuring the world’s first Snapdragon 7s Gen3 chipset · TechNode

1 Min Read
Computing

Clubhouse App: What It Is & How To Use It

15 Min Read
Computing

LG Display sells its Guangzhou LCD panel plant to TCL for $1.54 billion · TechNode

1 Min Read
//

World of Software is your one-stop website for the latest tech news and updates, follow us now to get the news that matters to you.

Quick Link

  • Privacy Policy
  • Terms of use
  • Advertise
  • Contact

Topics

  • Computing
  • Software
  • Press Release
  • Trending

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

World of SoftwareWorld of Software
Follow US
Copyright © All Rights Reserved. World of Software.
Welcome Back!

Sign in to your account

Lost your password?